cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A246388 Nonnegative integers k satisfying sin(k) >= 0 and sin(k+1) <= 0.

Original entry on oeis.org

3, 9, 15, 21, 28, 34, 40, 47, 53, 59, 65, 72, 78, 84, 91, 97, 103, 109, 116, 122, 128, 135, 141, 147, 153, 160, 166, 172, 179, 185, 191, 197, 204, 210, 216, 223, 229, 235, 241, 248, 254, 260, 267, 273, 279, 285, 292, 298, 304, 311, 317, 323, 329, 336, 342
Offset: 0

Views

Author

Clark Kimberling, Aug 24 2014

Keywords

Comments

A246388 and A038130 (Beatty sequence for 2*Pi) partition A022844 (Beatty sequence for Pi). Likewise, A054386, the complement of A022844, is partitioned by A246389 and A246390. (See the Mathematica program.)

Crossrefs

Programs

  • Mathematica
    z = 400; f[x_] := Sin[x]
    Select[Range[0, z], f[#]*f[# + 1] <= 0 &] (* A022844 *)
    Select[Range[0, z], f[#] >= 0 && f[# + 1] <= 0 &]  (* A246388 *)
    Select[Range[0, z], f[#] <= 0 && f[# + 1] >= 0 &] (* A038130 *)
    Select[Range[0, z], f[#]*f[# + 1] > 0 &] (* A054386 *)
    Select[Range[0, z], f[#] >= 0 && f[# + 1] >= 0 &]  (* A246389 *)
    Select[Range[0, z], f[#] <= 0 && f[# + 1] <= 0 &] (* A246390 *)

A246389 Nonnegative integers k satisfying sin(k) >= 0 and sin(k+1) >= 0.

Original entry on oeis.org

0, 1, 2, 7, 8, 13, 14, 19, 20, 26, 27, 32, 33, 38, 39, 44, 45, 46, 51, 52, 57, 58, 63, 64, 70, 71, 76, 77, 82, 83, 88, 89, 90, 95, 96, 101, 102, 107, 108, 114, 115, 120, 121, 126, 127, 132, 133, 134, 139, 140, 145, 146, 151, 152, 158, 159, 164, 165, 170, 171
Offset: 0

Views

Author

Clark Kimberling, Aug 24 2014

Keywords

Comments

A246388 and A038130 (Beatty sequence for 2*Pi) partition A022844 (Beatty sequence for Pi). Likewise, A054386, the complement of A022844, is partitioned by A246389 and A246390. (See the Mathematica program.)

Crossrefs

Programs

  • Maple
    Digits := 100:
    isA246389 := proc(k)
        if evalf(sin(k)) >= 0 and evalf(sin(k+1)) >= 0 then
            return true ;
        else
            return false ;
        end if;
    end proc:
    A246389 := proc(n)
        option remember ;
        if n = 1 then
            0;
        else
            for a from procname(n-1)+1 do
                if isA246389(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A246389(n),n=1..100) ; # assumes offset 1 R. J. Mathar, Jan 18 2024
  • Mathematica
    z = 400; f[x_] := Sin[x]
    Select[Range[0, z], f[#]*f[# + 1] <= 0 &] (* A022844 *)
    Select[Range[0, z], f[#] >= 0 && f[# + 1] <= 0 &]  (* A246388 *)
    Select[Range[0, z], f[#] <= 0 && f[# + 1] >= 0 &] (* A038130 *)
    Select[Range[0, z], f[#]*f[# + 1] > 0 &] (* A054386 *)
    Select[Range[0, z], f[#] >= 0 && f[# + 1] >= 0 &]  (* A246389 *)
    Select[Range[0, z], f[#] <= 0 && f[# + 1] <= 0 &] (* A246390 *)
Showing 1-2 of 2 results.