cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A246388 Nonnegative integers k satisfying sin(k) >= 0 and sin(k+1) <= 0.

Original entry on oeis.org

3, 9, 15, 21, 28, 34, 40, 47, 53, 59, 65, 72, 78, 84, 91, 97, 103, 109, 116, 122, 128, 135, 141, 147, 153, 160, 166, 172, 179, 185, 191, 197, 204, 210, 216, 223, 229, 235, 241, 248, 254, 260, 267, 273, 279, 285, 292, 298, 304, 311, 317, 323, 329, 336, 342
Offset: 0

Views

Author

Clark Kimberling, Aug 24 2014

Keywords

Comments

A246388 and A038130 (Beatty sequence for 2*Pi) partition A022844 (Beatty sequence for Pi). Likewise, A054386, the complement of A022844, is partitioned by A246389 and A246390. (See the Mathematica program.)

Crossrefs

Programs

  • Mathematica
    z = 400; f[x_] := Sin[x]
    Select[Range[0, z], f[#]*f[# + 1] <= 0 &] (* A022844 *)
    Select[Range[0, z], f[#] >= 0 && f[# + 1] <= 0 &]  (* A246388 *)
    Select[Range[0, z], f[#] <= 0 && f[# + 1] >= 0 &] (* A038130 *)
    Select[Range[0, z], f[#]*f[# + 1] > 0 &] (* A054386 *)
    Select[Range[0, z], f[#] >= 0 && f[# + 1] >= 0 &]  (* A246389 *)
    Select[Range[0, z], f[#] <= 0 && f[# + 1] <= 0 &] (* A246390 *)

A246390 Nonnegative integers k satisfying sin(k) <= 0 and sin(k+1) <= 0.

Original entry on oeis.org

4, 5, 10, 11, 16, 17, 22, 23, 24, 29, 30, 35, 36, 41, 42, 48, 49, 54, 55, 60, 61, 66, 67, 68, 73, 74, 79, 80, 85, 86, 92, 93, 98, 99, 104, 105, 110, 111, 112, 117, 118, 123, 124, 129, 130, 136, 137, 142, 143, 148, 149, 154, 155, 156, 161, 162, 167, 168, 173
Offset: 0

Views

Author

Clark Kimberling, Aug 24 2014

Keywords

Comments

A246388 and A038130 (Beatty sequence for 2*Pi) partition A022844 (Beatty sequence for Pi). Likewise, A054386, the complement of A022844, is partitioned by A246389 and A246390. (See the Mathematica program.)

Crossrefs

Programs

  • Mathematica
    z = 400; f[x_] := Sin[x]
    Select[Range[0, z], f[#]*f[# + 1] <= 0 &] (* A022844 *)
    Select[Range[0, z], f[#] >= 0 && f[# + 1] <= 0 &]  (* A246388 *)
    Select[Range[0, z], f[#] <= 0 && f[# + 1] >= 0 &] (* A038130 *)
    Select[Range[0, z], f[#]*f[# + 1] > 0 &] (* A054386 *)
    Select[Range[0, z], f[#] >= 0 && f[# + 1] >= 0 &]  (* A246389 *)
    Select[Range[0, z], f[#] <= 0 && f[# + 1] <= 0 &] (* A246390 *)
    SequencePosition[Table[If[Sin[n]<=0,1,0],{n,200}],{1,1}][[;;,1]] (* Harvey P. Dale, Apr 02 2023 *)

A369273 Nonnegative numbers k satisfying sin(k) < sin(k+1) < sin(k+2).

Original entry on oeis.org

0, 5, 6, 11, 12, 17, 18, 24, 25, 30, 31, 36, 37, 42, 43, 44, 49, 50, 55, 56, 61, 62, 68, 69, 74, 75, 80, 81, 86, 87, 88, 93, 94, 99, 100, 105, 106, 112, 113, 118, 119, 124, 125, 130, 131, 132, 137, 138, 143, 144, 149, 150, 156, 157, 162, 163, 168, 169, 174, 175, 181, 182, 187, 188, 193, 194
Offset: 1

Views

Author

R. J. Mathar, Jan 18 2024

Keywords

Comments

Subsequence of terms in A026309: The smaller of two consecutive terms there.
The terms A246389(.)-2 almost match the terms here; the exceptions are terms 178, 220, 266, 310, 555, 599, ... in A246389 where the associates 176, 218, 264, 308, ... are not in this sequence. - Hugo Pfoertner, Jan 18 2024

Crossrefs

Programs

  • Maple
    isA369273 := proc(k)
        local s ;
        s := [seq(evalf(sin(k+i)),i=0..2)] ;
        if s[1] < s[2] and s[2] < s[3] then
            true;
        else
            false;
        end if;
    end proc:
    A369273 := proc(n)
        option remember ;
        if n = 1 then
            0;
        else
            for a from procname(n-1)+1 do
                if isA369273(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A369273(n),n=1..100) ;
  • Mathematica
    Select[Range[0,194], Sin[#]James C. McMahon, Jan 22 2024 *)
Showing 1-3 of 3 results.