cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A246413 Positive integers k satisfying csc(k) > csc(k+1).

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 112, 114, 116, 118, 120, 122, 124, 126
Offset: 1

Views

Author

Clark Kimberling, Aug 25 2014

Keywords

Comments

a(n), A246414, and A246415 partition the positive integers.

Crossrefs

Cf. A246414, A246415, A246410 (complement of a(n)).

Programs

A246411 Positive integers k satisfying csc(k) > csc(k+1) < csc(k+2).

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 112, 114, 116, 118, 120, 122, 124, 126, 128
Offset: 1

Views

Author

Clark Kimberling, Aug 25 2014

Keywords

Comments

A246410, a(n), and A246412 partition the positive integers.

Crossrefs

Programs

  • Mathematica
    z = 200; f[x_] := f[x] = Csc[x];
    Select[Range[1, z], f[#] < f[# + 1] &] (*A246410*)
    Select[Range[1, z], f[#] > f[# + 1] < f[# + 2] &] (*A246411*)
    Select[Range[1, 10 z], f[#] > f[# + 1] > f[# + 2] < f[# + 3] &] (*A246412*)

Formula

a(n) = A158333(n-1) for n<73. - R. J. Mathar, Sep 01 2014

A246412 Positive integers k satisfying csc(k) > csc(k+1) > csc(k+2) < csc(k+3).

Original entry on oeis.org

44, 88, 132, 199, 243, 287, 331, 377, 421, 465, 509, 532, 576, 620, 664, 710, 754, 798, 842, 909, 953, 997, 1041, 1087, 1131, 1175, 1219, 1242, 1286, 1330, 1374, 1420, 1464, 1508, 1552, 1619, 1663, 1707, 1751, 1797, 1841, 1885, 1929, 1952, 1996, 2040, 2084
Offset: 1

Views

Author

Clark Kimberling, Aug 25 2014

Keywords

Comments

A246410, A246411, and a(n) partition the positive integers.

Crossrefs

Programs

  • Mathematica
    z = 200; f[x_] := f[x] = Csc[x];
    Select[Range[1, z], f[#] < f[# + 1] &] (*A246410*)
    Select[Range[1, z], f[#] > f[# + 1] < f[# + 2] &] (*A246411*)
    Select[Range[1, 10 z], f[#] > f[# + 1] > f[# + 2] < f[# + 3] &] (*A246412*)
Showing 1-3 of 3 results.