cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A246410 Positive integers k satisfying csc(k) < csc(k+1).

Original entry on oeis.org

2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 111, 113, 115, 117, 119, 121, 123
Offset: 1

Views

Author

Clark Kimberling, Aug 25 2014

Keywords

Comments

Every positive integer is in exactly one of the sequences A246410, A246411, and A246412.

Crossrefs

Cf. A246411, A246412, A246413 (complement of a(n)).

Programs

  • Mathematica
    z = 200; f[x_] := f[x] = Csc[x];
    Select[Range[1, z], f[#] < f[# + 1] &] (*A246410*)
    Select[Range[1, z], f[#] > f[# + 1] < f[# + 2] &] (*A246411*)
    Select[Range[1, 10 z], f[#] > f[# + 1] > f[# + 2] < f[# + 3] &] (*A246412*)

A246414 Positive integers k satisfying csc(k) < csc(k+1) > csc(k+2).

Original entry on oeis.org

2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129
Offset: 1

Views

Author

Clark Kimberling, Aug 25 2014

Keywords

Comments

A246413, a(n), and A246415 partition the positive integers.

Crossrefs

Programs

A246415 Positive integers k satisfying csc(k) < csc(k+1) < csc(k+2) > csc(k+3).

Original entry on oeis.org

22, 66, 110, 154, 177, 221, 265, 309, 355, 399, 443, 487, 554, 598, 642, 686, 732, 776, 820, 864, 887, 931, 975, 1019, 1065, 1109, 1153, 1197, 1264, 1308, 1352, 1396, 1442, 1486, 1530, 1574, 1597, 1641, 1685, 1729, 1775, 1819, 1863, 1907, 1974, 2018, 2062
Offset: 1

Views

Author

Clark Kimberling, Aug 25 2014

Keywords

Comments

A246413, A246414, and this sequence partition the positive integers.

Crossrefs

Programs

  • Mathematica
    z = 200;
    f[x_] := f[x] = Csc[x];
    Select[Range[1, z], f[#] > f[# + 1] &]  (* A246413 *)
    Select[Range[1, z], f[#] < f[# + 1] > f[# + 2] &]  (* A246414 *)
    Select[Range[1, z], f[#] < f[# + 1] < f[# + 2] > f[# + 3] &]  (* A246415 *)
  • PARI
    is(n) = (1/sin(n)) < (1/sin(n+1)) && (1/sin(n+1)) < (1/sin(n+2)) && (1/sin(n+2)) > (1/sin(n+3)) \\ Felix Fröhlich, Jan 02 2018

Extensions

Name corrected by David Gross, Jan 02 2018
Showing 1-3 of 3 results.