A246469 Given a number of k digits x = d_(k)*10^(k-1) + d_(k-1)*10^(k-2) + … + d_(2)*10 + d_(1), consider y = p_(1)^d_(k)*p_(2)^d_(k-1)*…*p_(k)^d_(1), where p_(i) is the i-th prime. Sequence lists the numbers x such that y / x is an integer.
1, 2, 4, 8, 18, 27, 36, 48, 54, 64, 72, 96, 125, 135, 162, 225, 375, 432, 486, 625, 648, 675, 864, 972, 1225, 1250, 1323, 1350, 1575, 1701, 1715, 1875, 2250, 2646, 2835, 2916, 3375, 3528, 3645, 3675, 3750, 3969, 4116, 4375, 4536, 4725, 4860, 5145, 5488, 5832
Offset: 1
Examples
x = 48 -> y = 2^4*3^8 = 104976 and 104976 / 48 = 2187. x = 972 -> y = 2^9*3^7*5^2 = 27993600 and 27993600 / 972 = 28800.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..1000
Programs
-
Maple
with(numtheory):P:=proc(q) local a,b,k,n; for n from 1 to q do a:=n; b:=1; for k from 1 to ilog10(n)+1 do b:=b*ithprime(ilog10(n)+2-k)^(a mod 10); a:=trunc(a/10); od; if type(b/n,integer) then print(n); fi; od; end: P(10^9);
Comments