A246512 a(n) = (sum_{k=0}^{n-1}(3k^2+3k+1)*C(n-1,k)^2*C(n+k,k)^2)/n^3, where C(n,k) denotes the binomial coefficient n!/(k!*(n-k)!).
1, 8, 87, 1334, 25045, 529080, 12076435, 291307490, 7325385345, 190294925864, 5074233846583, 138240914882394, 3834434331534781, 107990908896551192, 3081524055740420811, 88938694296657330170, 2592715751635344852505, 76252823735941187830920, 2260342454730542009915455, 67476975730679069406101870
Offset: 1
Keywords
Examples
a(2) = 8 since sum_{k=0,1} (3k^2+3k+1)C(1,k)^2*C(2+k,k)^2 = 1 + 7*3^2 = 64 = 2^3*8.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..100
- Zhi-Wei Sun, Two new kinds of numbers and related divisibility results, arXiv:1408.5381 [math.NT], 2014-2018.
- Zuo-Ru Zhang, Proof of two conjectures of Z.-W. Sun on combinatorial sequences, arXiv:2112.12427 [math.CO], 2021.
Programs
-
Mathematica
a[n_]:=Sum[(3k^2+3k+1)*(Binomial[n-1,k]Binomial[n+k,k])^2,{k,0,n-1}]/(n^3) Table[a[n],{n,1,20}]
-
PARI
a(n) = sum(k=0, n-1, (3*k^2+3*k+1)*binomial(n-1,k)^2*binomial(n+k,k)^2) /n^3; \\ Michel Marcus, Dec 24 2021
Formula
Recurrence (obtained via the Zeilberger algorithm):
n^3*(n + 1)*(2n + 5)*(3n^2 + 12n + 11)*(6n^2 + 24n + 25)*a(n) - (n + 1)*(2n + 5)*(630n^7 + 6552n^6 + 28137n^5 + 64134n^4 + 82777n^3 + 59512n^2 + 21646n + 3076)*a(n+1) + (n + 2)*(2n + 1)*(630n^7 + 6678n^6 + 29271n^5 + 68751n^4 + 93469n^3 + 73445n^2 + 30640n + 5072)*a(n+2) - (n + 2)*(n + 3)^3*(2n + 1)*(3n^2 + 6n + 2)*(6n^2 + 12n + 7)*a(n+3) = 0.
Comments