A246528 Number of endofunctions on [n] whose cycle lengths are divisors of 8.
1, 1, 4, 25, 224, 2601, 37072, 626137, 12232320, 271494865, 6750538496, 185923318329, 5619645500416, 184961854976185, 6585429015521280, 252203521861645561, 10338251689510381568, 451650823526438037153, 20949317446607098716160, 1028215744082428119960025
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..350
Crossrefs
Column k=8 of A246522.
Programs
-
Maple
with(numtheory): egf:= k-> exp(add((-LambertW(-x))^d/d, d=divisors(k))): a:= n-> n!*coeff(series(egf(8), x, n+1), x, n): seq(a(n), n=0..25); # second Maple program: with(combinat): b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-1)* (i-1)!^j, j=0..`if`(irem(8, i)=0, n/i, 0)))) end: a:= n-> add(b(j, min(8, j))*n^(n-j)*binomial(n-1, j-1), j=0..n): seq(a(n), n=0..25);
Formula
E.g.f.: exp(Sum_{d|8} (-LambertW(-x))^d/d).