cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246531 Number of endofunctions on [n] whose cycle lengths are divisors of n.

Original entry on oeis.org

1, 1, 4, 18, 224, 1320, 42552, 262864, 12232320, 169594560, 6117023600, 61920993024, 8022787347456, 56694391376896, 5193025319432160, 174746314698336000, 10338252997184749568, 121439552019384139776, 26096843176349347142208, 262144006402373705728000
Offset: 0

Views

Author

Alois P. Heinz, Aug 28 2014

Keywords

Crossrefs

Main diagonal of A246522.

Programs

  • Maple
    with(numtheory):
    egf:= k-> exp(add((-LambertW(-x))^d/d, d=divisors(k))):
    a:= n-> n!*coeff(series(egf(n), x, n+1), x, n):
    seq(a(n), n=0..20);
    # second Maple program:
    with(combinat):
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-1, k)*
          (i-1)!^j, j=0..`if`(irem(k, i)=0, n/i, 0))))
        end:
    a:= n-> add(b(j$2, n)*n^(n-j)*binomial(n-1, j-1), j=0..n):
    seq(a(n), n=0..20);
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!);
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0,
         Sum[multinomial[n, Join[{n - i*j},
         Table[i, {j}]]]/j!*b[n - i*j, i - 1, k]*(i - 1)!^j,
         {j, 0, If[Mod[k, i] == 0, n/i, 0]}]]];
    a[n_] := If[n==0, 1, Sum[b[j, j, n]*n^(n-j)*Binomial[n-1, j-1], {j, 0, n}]];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 01 2022, after Alois P. Heinz *)

Formula

a(n) = n! * [x^n] exp(Sum_{d|n} (-LambertW(-x))^d/d).
a(n) = A246522(n,n).