A246547 Prime powers p^e where p is a prime and e >= 2 (prime powers without the primes or 1).
4, 8, 9, 16, 25, 27, 32, 49, 64, 81, 121, 125, 128, 169, 243, 256, 289, 343, 361, 512, 529, 625, 729, 841, 961, 1024, 1331, 1369, 1681, 1849, 2048, 2187, 2197, 2209, 2401, 2809, 3125, 3481, 3721, 4096, 4489, 4913, 5041, 5329, 6241, 6561, 6859, 6889, 7921, 8192, 9409, 10201, 10609, 11449, 11881, 12167, 12769, 14641
Offset: 1
Links
- Jens Kruse Andersen, Table of n, a(n) for n = 1..10000
- Chai Wah Wu, Algorithms for complementary sequences, arXiv:2409.05844 [math.NT], 2024.
Crossrefs
Essentially the same as A025475.
There are four different sequences which may legitimately be called "prime powers": A000961 (p^k, k >= 0), A246655 (p^k, k >= 1), A246547 (p^k, k >= 2), A025475 (p^k, k=0 and k >= 2). When you refer to "prime powers", be sure to specify which of these you mean. Also A001597 is the sequence of nontrivial powers n^k, n >= 1, k >= 2. - N. J. A. Sloane, Mar 24 2018
Programs
-
Maple
isA246547 := proc(n) local ifs; ifs := ifactors(n)[2] ; if nops(ifs) <> 1 then false; else is(op(2, op(1, ifs)) > 1); end if; end proc: for n from 2 do if isA246547(n) then print(n) ; end if; end do: # R. J. Mathar, Feb 01 2016 # Or: isA246547 := n -> not isprime(n) and nops(numtheory:-factorset(n)) = 1: select(isA246547, [$1..10000]); # Peter Luschny, May 01 2018
-
Mathematica
With[{upto=15000},Complement[Select[Range[upto],PrimePowerQ],Prime[ Range[ PrimePi[ upto]]]]] (* Harvey P. Dale, Nov 28 2014 *) Select[ Range@ 15000, PrimePowerQ@# && !SquareFreeQ@# &] (* Robert G. Wilson v, Dec 01 2014 *) With[{n = 15000}, Union@ Flatten@ Table[Array[p^# &, Floor@ Log[p, n] - 1, 2], {p, Prime@ Range@ PrimePi@ Sqrt@ n}] ] (* Michael De Vlieger, Jul 06 2018, faster program *)
-
PARI
for(n=1,10^5,if(isprimepower(n)>=2,print1(n,", ")));
-
PARI
m=10^5; v=[]; forprime(p=2, sqrtint(m), e=2; while(p^e<=m, v=concat(v, p^e); e++)); v=vecsort(v) \\ Faster program. Jens Kruse Andersen, Aug 29 2014
-
Python
from sympy import primepi, integer_nthroot def A246547(n): def f(x): return int(n-1+x-sum(primepi(integer_nthroot(x,k)[0]) for k in range(2,x.bit_length()))) kmin, kmax = 1,2 while f(kmax) >= kmax: kmax <<= 1 while True: kmid = kmax+kmin>>1 if f(kmid) < kmid: kmax = kmid else: kmin = kmid if kmax-kmin <= 1: break return kmax # Chai Wah Wu, Aug 14 2024
-
SageMath
def A246547List(n): return [p for p in srange(2, n) if p.is_prime_power() and not p.is_prime()] print(A246547List(14642)) # Peter Luschny, Sep 16 2023
Formula
a(n) = A025475(n+1). - M. F. Hasler, Aug 29 2014
Sum_{n>=1} 1/a(n) = Sum_{p prime} 1/(p*(p-1)) = A136141. - Amiram Eldar, Dec 21 2020
Comments