cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246550 Prime powers p^e where p is a prime and e >= 4.

Original entry on oeis.org

16, 32, 64, 81, 128, 243, 256, 512, 625, 729, 1024, 2048, 2187, 2401, 3125, 4096, 6561, 8192, 14641, 15625, 16384, 16807, 19683, 28561, 32768, 59049, 65536, 78125, 83521, 117649, 130321, 131072, 161051, 177147, 262144, 279841, 371293, 390625, 524288, 531441, 707281, 823543, 923521, 1048576, 1419857, 1594323, 1771561
Offset: 1

Views

Author

Joerg Arndt, Aug 29 2014

Keywords

Crossrefs

Programs

  • Maple
    N:= 10^7: # to get all terms <= N
    {seq(seq(p^m, m=4..floor(log[p](N))), p = select(isprime,[2,seq(2*i+1,i=1..floor(N^(1/4)))]))}; # Robert Israel, Aug 29 2014
  • Mathematica
    With[{max = 10^6}, Sort @ Flatten @ Table[p^Range[4, Floor[Log[p, max]]], {p, Select[Range[Surd[max, 4]], PrimeQ]}]] (* Amiram Eldar, Oct 24 2020 *)
  • PARI
    m=10^7; v=[]; forprime(p=2, m^(1/4), e=4; while(p^e<=m, v=concat(v, p^e); e++)); v=vecsort(v) \\ Jens Kruse Andersen, Aug 29 2014
    
  • Python
    from math import isqrt
    from sympy import primerange, integer_nthroot, primepi
    def A246550(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n+x-sum(primepi(integer_nthroot(x, k)[0]) for k in range(4, x.bit_length())))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f,n,n) # Chai Wah Wu, Sep 12 2024

Formula

Sum_{n>=1} 1/a(n) = Sum_{p prime} 1/(p^3*(p-1)) = 0.1461466097... - Amiram Eldar, Oct 24 2020