cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246563 G.f.: Sum_{n>=0} x^n / (1-x^2)^(2*n+1) * [Sum_{k=0..n} C(n,k)^2 * x^(2*k)]^2.

Original entry on oeis.org

1, 1, 2, 6, 15, 39, 116, 340, 1001, 3041, 9322, 28718, 89363, 279987, 881376, 2788464, 8860677, 28256709, 90407666, 290124182, 933482527, 3010689527, 9731366060, 31516942060, 102259648701, 332347297141, 1081810639970, 3526399820374, 11510355762339, 37616896717155
Offset: 0

Views

Author

Paul D. Hanna, Aug 29 2014

Keywords

Comments

Bisections form A246570 and A246571.
Compare formula for a(n) to a formula for tribonacci numbers:
A000073(n+2) = Sum_{k=0..[n/2]} Sum_{j=0..k} C(n-k-j,k) * C(k,j).

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 15*x^4 + 39*x^5 + 116*x^6 + 340*x^7 +...
where the g.f. is given by the binomial series identity:
A(x) = 1/(1-x^2) + x/(1-x^2)^3 * (1 + x^2)^2
+ x^2/(1-x^2)^5 * (1 + 2^2*x^2 + x^4)^2
+ x^3/(1-x^2)^7 * (1 + 3^2*x^2 + 3^2*x^4 + x^6)^2
+ x^4/(1-x^2)^9 * (1 + 4^2*x^2 + 6^2*x^4 + 4^2*x^6 + x^8)^2
+ x^5/(1-x^2)^11 * (1 + 5^2*x^2 + 10^2*x^4 + 10^2*x^6 + 5^2*x^8 + x^10)^2 +...
equals the series
A(x) = 1/(1-x) + x^2/(1-x)^3 * (1 + x)^2
+ x^4/(1-x)^5 * (1 + 2^2*x + x^2)^2
+ x^6/(1-x)^7 * (1 + 3^2*x + 3^2*x^2 + x^3)^2
+ x^8/(1-x)^9 * (1 + 4^2*x + 6^2*x^2 + 4^2*x^3 + x^4)^2
+ x^10/(1-x)^11 * (1 + 5^2*x + 10^2*x^2 + 10^2*x^3 + 5^2*x^4 + x^5)^2 +...
Curiously, the BISECTIONS of the g.f. are squares of integer series:
let A(x) = B0(x^2) + x*B1(x^2), then
B0(x) = 1 + 2*x + 15*x^2 + 116*x^3 + 1001*x^4 + 9322*x^5 + 89363*x^6 +...+ A246570(n)*x^n +...
sqrt(B0(x)) = 1 + x + 7*x^2 + 51*x^3 + 425*x^4 + 3879*x^5 + 36527*x^6 +...+ A246572(n)*x^n +...
B1(x) =  1 + 6*x + 39*x^2 + 340*x^3 + 3041*x^4 + 28718*x^5 + 279987*x^6 +...+ A246571(n)*x^n +...
sqrt(B1(x)) = 1 + 3*x + 15*x^2 + 125*x^3 + 1033*x^4 + 9385*x^5 + 88531*x^6 +...+  A246573(n)*x^n +...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Binomial[n-k-j,k]^2 * Binomial[k,j]^2,{j,0,k}],{k,0,Floor[n/2]}],{n,0,20}] (* Vaclav Kotesovec, Sep 02 2014 *)
  • PARI
    /* By definition: */
    {a(n)=local(A=1); A=sum(m=0, n, x^m/(1-x^2)^(2*m+1) * sum(k=0, m, binomial(m, k)^2 * x^(2*k))^2 +x*O(x^n)); polcoeff(A, n)}
    for(n=0, 35, print1(a(n), ", "))
    
  • PARI
    /* By a binomial identity: */
    {a(n)=local(A=1); A=sum(m=0, n, x^(2*m)/(1-x)^(2*m+1) * sum(k=0, m, binomial(m, k)^2 * x^k)^2 +x*O(x^n)); polcoeff(A, n)}
    for(n=0, 35, print1(a(n), ", "))
    
  • PARI
    /* By a binomial identity: */
    {a(n)=polcoeff(sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^2 * x^k * sum(j=0, k, binomial(k, j)^2 * x^j )+x*O(x^n))), n)}
    for(n=0, 35, print1(a(n), ", "))
    
  • PARI
    /* By a binomial identity: */
    {a(n)=polcoeff(sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^2 * x^(m-k) * sum(j=0, k, binomial(k, j)^2 * x^(2*j) )+x*O(x^n))), n)}
    for(n=0, 35, print1(a(n), ", "))
    
  • PARI
    /* From a formula for a(n): */
    {a(n)=sum(k=0, n\2, sum(j=0, min(k,n-2*k), binomial(n-k-j, k)^2 * binomial(k, j)^2 ))}
    for(n=0, 35, print1(a(n), ", "))

Formula

G.f.: Sum_{n>=0} x^(2*n) / (1-x)^(2*n+1) * [Sum_{k=0..n} C(n,k)^2 * x^k]^2.
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k)^2 * x^k * Sum_{j=0..k} C(k,j)^2 * x^j.
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k)^2 * x^(n-k) * Sum_{j=0..k} C(k,j)^2 * x^(2*j).
a(n) = Sum_{k=0..[n/2]} Sum_{j=0..k} C(n-k-j,k)^2 * C(k,j)^2.
Recurrence: n^2*(2*n - 7)*(2*n - 5)*a(n) = (2*n - 7)*(4*n^3 - 14*n^2 + 10*n - 3)*a(n-1) + (8*n^4 - 64*n^3 + 174*n^2 - 198*n + 87)*a(n-2) + (2*n - 3)*(20*n^3 - 150*n^2 + 362*n - 281)*a(n-3) + 3*(2*n - 5)*a(n-4) - (2*n - 7)*(20*n^3 - 150*n^2 + 362*n - 279)*a(n-5) - (8*n^4 - 96*n^3 + 414*n^2 - 742*n + 447)*a(n-6) - (2*n - 3)*(4*n^3 - 46*n^2 + 170*n - 197)*a(n-7) + (n-5)^2*(2*n - 5)*(2*n - 3)*a(n-8). - Vaclav Kotesovec, Sep 02 2014
a(n) ~ c * d^n / (Pi*n), where d = ((54+6*sqrt(33))^(2/3) + 12 + 3*(54+6*sqrt(33))^(1/3)) / (3*(54+6*sqrt(33))^(1/3)) = 3.3829757679062374941227... is the root of the equation -1 - d - 3*d^2 + d^3 = 0, c = 1/12*(199+3*sqrt(33))^(1/3) + 17/(6*(199+3*sqrt(33))^(1/3)) + 7/12 = 1.55556563078009965666864... . - Vaclav Kotesovec, Sep 02 2014