A246601 Sum of divisors d of n with property that the binary representation of d can be obtained from the binary representation of n by changing any number of 1's to 0's.
1, 2, 4, 4, 6, 8, 8, 8, 10, 12, 12, 16, 14, 16, 24, 16, 18, 20, 20, 24, 22, 24, 24, 32, 26, 28, 40, 32, 30, 48, 32, 32, 34, 36, 36, 40, 38, 40, 43, 48, 42, 44, 44, 48, 60, 48, 48, 64, 50, 52, 72, 56, 54, 80, 61, 64, 58, 60, 60, 96, 62, 64, 104, 64, 66, 68, 68, 72, 70, 72
Offset: 1
Examples
12 = 1100_2; only the divisors 4 = 0100_2 and 12 = 1100_2 satisfy the condition, so(12) = 4+12 = 16. 15 = 1111_2; all divisors 1,3,5,15 satisfy the condition, so a(15)=24.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory); sd:=proc(n) local a,d,s,t,i,sw; s:=convert(n,base,2); a:=0; for d in divisors(n) do sw:=-1; t:=convert(d,base,2); for i from 1 to nops(t) do if t[i]>s[i] then sw:=1; fi; od: if sw<0 then a:=a+d; fi; od; a; end; [seq(sd(n),n=1..100)];
-
Mathematica
a[n_] := DivisorSum[n, #*Boole[BitOr[#, n] == n] &]; Array[a, 100] (* Jean-François Alcover, Dec 02 2015, adapted from PARI *)
-
PARI
a(n) = sumdiv(n, d, d*(bitor(n,d)==n)); \\ Michel Marcus, Sep 07 2014
-
Python
from sympy import divisors def A246601(n): return sum(d for d in divisors(n) if n|d == n) # Chai Wah Wu, Sep 06 2014
Formula
a(2^i) = 2^i.
a(odd prime p) = p+1.
From Amiram Eldar, Dec 15 2022: (Start)
a(2*n) = 2*a(n), and therefore a(m*2^k) = 2^k*a(m) for m odd and k>=0.
a(2^n-1) = sigma(2^n-1) = A075708(n). (End)
a(n) = Sum_{d|n} d*(binomial(n,d) mod 2). - Ridouane Oudra, Apr 09 2025
Comments