cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246617 Number of endofunctions on [n] whose cycle lengths are multiples of 10.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 362880, 39916800, 2874009600, 175394419200, 9967384627200, 551675124000000, 30471021291110400, 1703458301210265600, 97213825272736972800, 5693251850259515942400, 343266731083210449715200, 21349233350716392722764800
Offset: 0

Views

Author

Alois P. Heinz, Aug 31 2014

Keywords

Comments

In general, column k of A246609 is (for k > 1) asymptotic to n^(n-1/2 + 1/(2*k)) * sqrt(2*Pi) / (2^(1/(2*k)) * k^(1/k) * Gamma(1/(2*k))) * (1 - (3*k-1)*(k-1) * sqrt(2/n) * Gamma(1/(2*k)) / (12 * k^2 * Gamma(1/2 + 1/(2*k)))). - Vaclav Kotesovec, Sep 01 2014

Crossrefs

Column k=10 of A246609.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i>n, 0, add(b(n-i*j, i+10)*(i-1)!^j*
          multinomial(n, n-i*j, i$j)/j!, j=0..n/i)))
        end:
    a:= a->add(b(j, 10)*n^(n-j)*binomial(n-1, j-1), j=0..n):
    seq(a(n), n=0..25);
  • Mathematica
    CoefficientList[Series[1/(1-LambertW[-x]^10)^(1/10),{x,0,20}],x] * Range[0,20]!  (* Vaclav Kotesovec, Sep 01 2014 *)

Formula

E.g.f.: 1/(1-LambertW(-x)^10)^(1/10). - Vaclav Kotesovec, Sep 01 2014
a(n) ~ n^(n-9/20) * 2^(7/20) * sqrt(Pi) / (5^(1/10) * Gamma(1/20)) * (1 - 87 * sqrt(2/n) * Gamma(1/20) / (400 * Gamma(11/20))). - Vaclav Kotesovec, Sep 01 2014