A246631 Number of integer solutions to x^2 + 2*y^2 + 2*z^2 = n.
1, 2, 4, 8, 6, 8, 8, 0, 12, 10, 8, 24, 8, 8, 16, 0, 6, 16, 12, 24, 24, 16, 8, 0, 24, 10, 24, 32, 0, 24, 16, 0, 12, 16, 16, 48, 30, 8, 24, 0, 24, 32, 16, 24, 24, 24, 16, 0, 8, 18, 28, 48, 24, 24, 32, 0, 48, 16, 8, 72, 0, 24, 32, 0, 6, 32, 32, 24, 48, 32, 16, 0
Offset: 0
Keywords
Examples
G.f. = 1 + 2*q + 4*q^2 + 8*q^3 + 6*q^4 + 8*q^5 + 8*q^6 + 12*q^8 + 10*q^9 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Mariia Dospolova, Ekaterina Kochetkova, and Eric T. Mortenson, A new Andrews--Crandall-type identity and the number of integer solutions to x^2+2y^2+2z^2=n, arXiv:2307.05244 [math.NT], 2023.
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Crossrefs
Programs
-
Magma
A := Basis( ModularForms( Gamma0(8), 3/2), 80); A[1] + 2*A[2];
-
Mathematica
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^2]^2, {q, 0, n}];
-
PARI
{a(n) = if( n<1, n==0, 2 * qfrep([ 1, 0, 0; 0, 2, 0; 0, 0, 2], n)[n])};
-
PARI
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^4 + A)^8 / (eta(x + A)^2 * eta(x^8 + A)^4), n))};
Formula
Theta series of quadratic form with Gram matrix [ 1, 0, 0; 0, 2, 0; 0, 0, 2 ].
Expansion of phi(q) * phi(q^2)^2 = phi(-q^4)^4 / phi(-q) in powers of q where phi() is a Ramanujan theta function.
Expansion of eta(q^2) * eta(q^4)^8 / (eta(q)^2 * eta(q^8)^4) in powers of q.
Euler transform of period 8 sequence [ 2, 1, 2, -7, 2, 1, 2, -3, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 4 (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A014455.
G.f.: theta_3(q) * theta_3(q^2)^2.
G.f.: Product{k>0} (1 - x^(2*k)) * (1 - x^(4*k))^8 / ((1 - x^k)^2 * (1 - x^(8*k))^4).
G.f.: Product{k>0} (1 + x^(2*k)) * (1 + x^k)^2 * (1 - x^(4*k))^3 / (1 + x^(4*k))^4.
Comments