cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246639 Sequence a(n) = 3 + 5*A001519(n+1) appearing in a certain three circle touching problem, together with A246638.

Original entry on oeis.org

8, 13, 28, 68, 173, 448, 1168, 3053, 7988, 20908, 54733, 143288, 375128, 982093, 2571148, 6731348, 17622893, 46137328, 120789088, 316229933, 827900708, 2167472188, 5674515853, 14856075368, 38893710248, 101825055373, 266581455868, 697919312228, 1827176480813, 4783610130208, 12523653909808
Offset: 0

Views

Author

Wolfdieter Lang, Sep 01 2014

Keywords

Comments

See the comments under A246638. The curvature c(n) defined there is c(n) = A246638(n) + (4*a(n)/5)*phi with phi = (1+sqrt(5))/2, the golden section. It lives in the quadratic number field Q(sqrt(5)). Descartes' theorem on touching circles gives c(n) = -4/5 + A(n) + A(n+1) + 2*sqrt((-4/5 )*(A(n) + A(n+1)) + A(n)*A(n+1)), with A(n) = A240926(n), n >= 0. For the proof of the first formula given below one compares this a(n) with the a(n) in c(n) given above. This uses standard Chebyshev S-polynomial identities with x = 3, like the three term recurrence and the Cassini-Simson type identity S(n, x)*S(n-2, x) = -1 + S(n-1, x)^2 (here for x=3). This implies S(n, 3)*S(n-1, 3) = (-1 + S(n, 3)^2 + S(n-1, 3)^2)/3. See also the W. Lang link in A240926, part III a).

Crossrefs

Programs

  • Magma
    I:=[8, 13, 28]; [n le 3 select I[n] else 4*Self(n-1) -4*Self(n-2) + Self(n-3): n in [1..30]]; // G. C. Greubel, Dec 20 2017
  • Mathematica
    CoefficientList[Series[(8-19*x+8*x^2)/((1-x)*(1-3*x+x^2)), {x, 0, 50}], x] (* or *) LinearRecurrence[{4,-4,1}, {8, 13, 28}, 30] (* G. C. Greubel, Dec 20 2017 *)
  • PARI
    Vec((8-19*x+8*x^2)/((1-x)*(1-3*x+x^2)) + O(x^30)) \\ Colin Barker, Nov 02 2016
    

Formula

a(n) = 3 + 5*(S(n, 3) - S(n-1, 3)) = 3 + 5*A001519(n+1), n >= 0, with Chebyshev S-polynomials (see A049310) with S(-1, x) = 0.
O.g.f.: (8-19*x+8*x^2)/((1-x)*(1-3*x+x^2)).
a(n) = 4*a(n-1) - 4*a(n-2) + a(n-3), n >=1, a(-2) = 13, a(-1) = 8, a(0) = 8.
a(n) = 2^(-1-n)*(3*2^(1+n)-(3-sqrt(5))^n*(-5+sqrt(5))+(3+sqrt(5))^n*(5+sqrt(5))). - Colin Barker, Nov 02 2016