A246641 Sequence a(n) = (1 + A007805(n))/2, appearing in a certain touching problem for three circles and a chord, together with A007805.
1, 9, 153, 2737, 49105, 881145, 15811497, 283725793, 5091252769, 91358824041, 1639367579961, 29417257615249, 527871269494513, 9472265593285977, 169972909409653065, 3050040103780469185, 54730748958638792257, 982103441151717791433, 17623131191772281453529, 316234258010749348372081, 5674593513001715989243921
Offset: 0
Examples
a(1) = 9 because c(1) = 5 + 81 + 2*sqrt(5*81) = 68 + 36*phi, which is indeed 4*(17 + 9*phi), with 17 = A007805(1).
Links
- Colin Barker, Table of n, a(n) for n = 0..797
- Giovanni Lucca, Circle Chains Inscribed in Symmetrical Lenses and Integer Sequences, Forum Geometricorum, Volume 16 (2016) 419-427.
- Eric Weisstein's World of Mathematics, Descartes' Circle Theorem.
- Wikipedia, Descartes' Theorem.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (19,-19,1).
Programs
-
Magma
I:=[1, 9, 153]; [n le 3 select I[n] else 19*Self(n-1) - 19*Self(n-2) + Self(n-3): n in [1..30]]; // G. C. Greubel, Dec 20 2017
-
Mathematica
LinearRecurrence[{19,-19,1},{1, 9, 153}, 30] (* or *) CoefficientList[ Series[(1 - 10*x + x^2)/((1-x)*(1 - 18*x + x^2)), {x, 0, 50}], x] (* G. C. Greubel, Dec 20 2017 *)
-
PARI
Vec((1-10*x+x^2)/((1-x)*(1-18*x+x^2)) + O(x^100)) \\ Colin Barker, Jan 01 2015
Formula
a(n) = (1 + S(n, 18) - S(n-1, 18))/2 = (1 + A007805(n))/2, n >= 0.
O.g.f.: (1 - 10*x + x^2)/((1-x)*(1 - 18*x + x^2)).
a(n) = 19*a(n-1) - 19*a(n-2) + a(n-3), n >= 1, with a(-2) = 9, a(-1) = 1 and a(0) = 1.
a(n) = (1/2+1/20*(9+4*sqrt(5))^(-n)*(5-2*sqrt(5)+(5+2*sqrt(5))*(9+4*sqrt(5))^(2*n))). - Colin Barker, Mar 04 2016
Comments