A246642 Sequence appearing in the curvature of a certain four-circle touching problem: (-3 + 5*A007805(n))/2.
1, 41, 761, 13681, 245521, 4405721, 79057481, 1418628961, 25456263841, 456794120201, 8196837899801, 147086288076241, 2639356347472561, 47361327966429881, 849864547048265321, 15250200518902345921, 273653744793193961281, 4910517205758588957161, 88115655958861407267641
Offset: 0
Examples
a(1) = 41 because the two curvatures of the circles in the larger part are c1(1) = 5 and c1(2) = 81 (from A115032), and c(1) = -4/5 + 5 + 81 + 2*sqrt((-4/5)*(5 + 81) + 5*81) = (4/5)*(213 + 41*sqrt(5))/2 = (4/5)*(86 + 41*phi) (by Descartes). This is indeed (4/5)*(2*(a(1) + 2) + a(1)*phi).
Links
- Colin Barker, Table of n, a(n) for n = 0..796
- Eric Weisstein's World of Mathematics, Descartes' Circle Theorem.
- Wikipedia, Descartes' Theorem.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (19,-19,1).
Programs
-
Magma
I:=[1, 41, 761]; [n le 5 select I[n] else 19*Self(n-1) - 19*Self(n-2) + Self(n-3): n in [1..30]]; // G. C. Greubel, Dec 20 2017
-
Mathematica
CoefficientList[Series[(1+22*x+x^2)/((1-x)*(1-18*x+x^2)), {x, 0, 50}], x] (* or *) LinearRecurrence[{19,-19,1}, {1,41,761}, 30] (* G. C. Greubel, Dec 20 2017 *)
-
PARI
Vec((1+22*x+x^2)/((1-x)*(1-18*x+x^2)) + O(x^30)) \\ Colin Barker, Sep 08 2015
Formula
a(n) = (-3 + 5*(S(n, 18) - S(n-1, 18)))/2 = (-3 + 5* A007805(n))/2, n >= 0, with Chebyshev's S-polynomials (see A049310).
O.g.f.: (1+22*x+x^2)/((1-x)*(1-18*x+x^2)).
a(n) = 19*a(n-1) - 19*a(n-2) + a(n-3), n >= 1, with a(-2)=41, a(-1)=1 and a(0)=1.
a(n) = (-6+(5-2*sqrt(5))*(9+4*sqrt(5))^(-n) + (5+2*sqrt(5))*(9+4*sqrt(5))^n)/4. - Colin Barker, Mar 03 2016
Comments