cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246653 G.f.: Sum_{n>=0} x^n / (1-x^2)^(2*n+1) * [Sum_{k=0..n} C(n,k)^2 * x^k] * [Sum_{k=0..n} C(n,k)^2 * x^(2*k)].

Original entry on oeis.org

1, 1, 3, 9, 25, 87, 287, 993, 3519, 12525, 45369, 165519, 608569, 2253307, 8386575, 31370297, 117834837, 444258387, 1680516731, 6375706325, 24253227159, 92481509389, 353417696625, 1353280137975, 5191349266275, 19948136148837, 76771074483837, 295880290515411, 1141860205058433, 4412129801125275
Offset: 0

Views

Author

Paul D. Hanna, Aug 31 2014

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 9*x^3 + 25*x^4 + 87*x^5 + 287*x^6 + 993*x^7 +...
where the g.f. is given by the binomial series:
A(x) = 1/(1-x^2) + x/(1-x^2)^3 * (1 + x) * (1 + x^2)
+ x^2/(1-x^2)^5 * (1 + 2^2*x + x^2) * (1 + 2^2*x^2 + x^4)
+ x^3/(1-x^2)^7 * (1 + 3^2*x + 3^2*x^2 + x^3) * (1 + 3^2*x^2 + 3^2*x^4 + x^6)
+ x^4/(1-x^2)^9 * (1 + 4^2*x + 6^2*x^2 + 4^2*x^3 + x^4) * (1 + 4^2*x^2 + 6^2*x^4 + 4^2*x^6 + x^8)
+ x^5/(1-x^2)^11 * (1 + 5^2*x + 10^2*x^2 + 10^2*x^3 + 5^2*x^4 + x^5) * (1 + 5^2*x^2 + 10^2*x^4 + 10^2*x^6 + 5^2*x^8 + x^10) +...
		

Crossrefs

Cf. A246563.

Programs

  • Mathematica
    Table[Sum[Binomial[2*k, k] * Binomial[n-k, k]^2,{k,0,Floor[n/2]}],{n,0,20}] (* Vaclav Kotesovec, Sep 02 2014 *)
  • PARI
    /* By definition: */
    {a(n)=local(A=1); A=sum(m=0, n, x^m/(1-x^2)^(2*m+1) * sum(k=0, m, binomial(m, k)^2 * x^k) * sum(k=0, m, binomial(m, k)^2 * x^(2*k)) +x*O(x^n)); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    /* By a binomial identity: */
    {a(n)=polcoeff(sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^2 * x^(m-k) * sum(j=0, k, binomial(k, j)^2 * x^j )+x*O(x^n))), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    /* From a formula for a(n): */
    {a(n)=sum(k=0, n\2, binomial(2*k, k)*binomial(n-k, k)^2)}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k)^2 * x^(n-k) * Sum_{j=0..k} C(k,j)^2 * x^j.
a(n) = Sum_{k=0..[n/2]} binomial(2*k, k) * binomial(n-k, k)^2.
Recurrence: n^2*(4*n-9)*a(n) = (8*n^3 - 26*n^2 + 18*n - 5)*a(n-1) + (28*n^3 - 119*n^2 + 162*n - 75)*a(n-2) + 2*(16*n^3 - 84*n^2 + 142*n - 75)*a(n-3) - 4*(2*n-5)^2*(4*n-5)*a(n-4). - Vaclav Kotesovec, Sep 02 2014
a(n) ~ 2^(2*n+1/2) / (Pi*n). - Vaclav Kotesovec, Sep 02 2014