cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A246656 Triangle read by rows: T(n, k) is the coefficient of x^k of the polynomial p_n(x) representing the n-th diagonal of A246654.

Original entry on oeis.org

0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 2, 2, 1, 0, 0, 3, 0, -1, 0, 1, 0, 1, 8, 5, -5, 0, 3, 1, 0, 0, -18, 0, 29, 0, -8, 0, 1, 0, 1, -80, -13, 121, 29, -35, -7, 4, 1, 0, 0, 357, 0, -513, 0, 182, 0, -22, 0, 1, 0, 1, 1865, 344, -2686, -484, 945, 175, -114, -21, 5, 1, 0
Offset: 0

Views

Author

Peter Luschny, Sep 13 2014

Keywords

Examples

			The first few polynomials and their coefficients:
             0;               0;
            1, 0;             1;
          0, 1, 0;            x;
         1, 1, 1, 0;          x*(x+1)+1;
       0, 1, 0, 1, 0;         x*(x^2+1);
      1, 1, 2, 2, 1, 0;       x*(x+1)*(x^2+x+1)+1;
    0, 3, 0, -1, 0, 1, 0;     x*(x^4-x^2+3);
  1, 8, 5, -5, 0, 3, 1, 0;    x*(x+1)*(x^4+2*x^3-2*x^2-3*x+8)+1;
0,-18, 0, 29, 0, -8, 0, 1,0;  x*(x^6-8*x^4+29*x^2-18);
The values of some polynomials:
------------------------------------------------
     n:    -4    -3   -2  -1   0   1    2     3
------------------------------------------------
p_0(n):     0,    0,   0,  0,  0,  0,   0,    0,   A000004
p_1(n):     1,    1,   1,  1,  1,  1,   1,    1,   A000012
p_2(n):    -4,   -3,  -2, -1,  0,  1,   2,    3,   A001477
p_3(n):    13,    7,   3,  1,  1,  3,   7,   13,   A002061
p_4(n):   -68,  -30, -10, -2,  0,  2,  10,   30,   A034262
p_5(n):   157,   43,   7,  1,  1,  7,  43,  157,
p_6(n):  -972, -225, -30, -3,  0,  3,  30,  225,
		

Crossrefs

Programs

  • Maple
    with(Student[NumericalAnalysis]):
    poly := proc(n) local B; if n = 0 then return 0 fi;
    B := (n,k) -> round(evalf(2*(BesselK(n,2)*BesselI(k,2)
    -(-1)^(n+k)*BesselI(n,2)*BesselK(k,2)),64));
    [seq([k+iquo(n,2),B(k+n,k)], k=-iquo(n,2)..n-1)];
    PolynomialInterpolation(%, independentvar=x);
    expand(Interpolant(%)) end:
    A246656_row := n -> seq(coeff(poly(n),x,j), j=0..n);
    seq(print(A246656_row(n)), n=0..11);
Showing 1-1 of 1 results.