A246655 Prime powers: numbers of the form p^k where p is a prime and k >= 1.
2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Brady Haran and Günter Ziegler, Cannons and Sparrows, Numberphile video (2018)
- H. Joris, C. Oestreicher and J. Steinig, The greatest common divisor of certain sets of binomial coefficients, Journal of Number Theory 21 (1985), pp. 101-119.
- Pavle V. M. Blagojević and Günter M. Ziegler, Convex equipartitions via equivariant obstruction theory, arXiv:1202.5504 [math.AT], 2012-2013; Israel Journal of Mathematics 200:1 (June 2014), pp 49-77.
- Karl-Heinz Kuhl, Inverse Riemann Spectrum
- Hans Montanus and Ron Westdijk, Cellular Automation and Binomials, Green Blue Mathematics (2022), p. 90.
- Laurentiu Panaitopol, Some of the properties of the sequence of powers of prime numbers, Rocky Mountain Journal of Mathematics, Volume 31, Number 4, Winter 2001.
- Balak Ram, Common factors of n!/(m!(n-m)!), (m = 1, 2, ... n-1), Journal of the Indian Mathematical Club (Madras) 1 (1909), pp. 39-43.
- Eric Weisstein's World of Mathematics, Prime Power
- Eric Weisstein's World of Mathematics, Projective Plane
- Chai Wah Wu, Algorithms for complementary sequences, arXiv:2409.05844 [math.NT], 2024.
- Wikipedia, Prime power
- Index entries for "core" sequences
Crossrefs
There are four different sequences which may legitimately be called "prime powers": A000961 (p^k, k >= 0), A246655 (p^k, k >= 1), A246547 (p^k, k >= 2), A025475 (p^k, k=0 and k >= 2). When you refer to "prime powers", be sure to specify which of these you mean. Also A001597 is the sequence of nontrivial powers n^k, n >= 1, k >= 2. - N. J. A. Sloane, Mar 24 2018
Partial sums of A275120.
Programs
-
Maple
select(t -> nops(numtheory:-factorset(t))=1, [$1..1000]); # Robert Israel, Sep 01 2014 A246655 := proc(n) A000961(n+1) end proc: # R. J. Mathar, Jan 09 2017 isprimepower := n -> nops(NumberTheory:-PrimeFactors(n)) = 1: # Peter Luschny, Oct 09 2022
-
Mathematica
Select[Range[222], PrimePowerQ]
-
PARI
[p| p <- [1..222], isprimepower(p)]
-
PARI
list(lim)=my(v=List(primes([2,lim\=1]))); for(e=2,logint(lim,2), forprime(p=2,sqrtnint(lim,e), listput(v,p^e))); Set(v) \\ Charles R Greathouse IV, Feb 03 2023
-
Python
from sympy import primerange m = 10**5 A246655 = [] for p in primerange(1,m): pe = p while pe < m: A246655.append(pe) pe *= p A246655 = sorted(A246655) # Chai Wah Wu, Sep 04 2014
-
Python
from sympy import primepi, integer_nthroot def A246655(n): def f(x): return int(n-1+x-sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length()))) kmin, kmax = 1,2 while f(kmax) >= kmax: kmax <<= 1 while True: kmid = kmax+kmin>>1 if f(kmid) < kmid: kmax = kmid else: kmin = kmid if kmax-kmin <= 1: break return kmax # Chai Wah Wu, Aug 20 2024
-
Sage
[n for n in (1..222) if sloane.A001221(n) == 1]
Comments