A246668 Decimal expansion of the asymptotic probability of success in the full information version of the secretary problem.
4, 4, 9, 2, 4, 7, 2, 1, 8, 8, 6, 9, 2, 1, 6, 2, 7, 1, 2, 2, 9, 8, 7, 9, 3, 9, 4, 3, 7, 9, 7, 0, 9, 2, 6, 7, 5, 0, 4, 8, 5, 8, 7, 3, 6, 3, 6, 9, 4, 5, 9, 4, 6, 4, 8, 6, 8, 4, 1, 3, 7, 4, 7, 6, 4, 4, 9, 3, 5, 5, 5, 8, 6, 7, 2, 6, 3, 2, 6, 4, 2, 4, 5, 5, 4, 8, 0, 4, 3, 7, 2, 7, 6, 8, 7, 6, 8, 4, 1, 5, 1
Offset: 0
Examples
0.4492472188692162712298793943797092675048587363694594648684...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.15 Optimal stopping constants, p. 361.
Links
- Steven R. Finch, Errata and Addenda to Mathematical Constants. p. 45.
- Eric Weisstein's MathWorld, Sultan's Dowry Problem.
- Wikipedia, Secretary problem.
Crossrefs
Cf. A246667.
Programs
-
Mathematica
b = x /. FindRoot[ExpIntegralEi[-x] - EulerGamma - Log[x] == -1, {x, 2}, WorkingPrecision -> 102]; E^-b - (E^b - b - 1)*ExpIntegralEi[-b] // RealDigits // First
Formula
e^(-b) - (e^b - b - 1)*Ei(-b), where b is A246667 and Ei is the exponential integral function.