A246671 Decimal expansion of Shepp's constant 'alpha', an optimal stopping constant associated with the case of a zero mean and unit variance distribution function.
8, 3, 9, 9, 2, 3, 6, 7, 5, 6, 9, 2, 3, 7, 2, 6, 8, 9, 6, 0, 3, 7, 7, 6, 9, 7, 7, 4, 2, 1, 8, 1, 5, 5, 6, 9, 3, 6, 1, 6, 2, 0, 6, 9, 8, 7, 0, 3, 9, 1, 2, 8, 5, 0, 4, 1, 5, 8, 2, 7, 2, 1, 6, 3, 6, 0, 9, 0, 8, 9, 6, 8, 6, 3, 9, 5, 3, 4, 6, 3, 8, 0, 6, 3, 8, 8, 0, 2, 0, 9, 6, 4, 6, 8, 0, 9, 7, 9, 9, 9, 9, 5, 8
Offset: 0
Examples
0.83992367569237268960377697742181556936162069870391285...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.15 Optimal stopping constants, p. 361.
Links
- Steven R. Finch, Errata and Addenda to Mathematical Constants. p. 45.
- L. A. Shepp, Explicit Solutions to Some Problems of Optimal Stopping.
- Eric Weisstein's MathWorld, Sultan's Dowry Problem.
- Wikipedia, Secretary problem.
Programs
-
Mathematica
x /. FindRoot[2*x - Sqrt[2*Pi]*(1 - x^2)*Exp[x^2/2]*(1 + Erf[x/Sqrt[2]]) == 0, {x, 1}, WorkingPrecision -> 103] // RealDigits // First
Formula
Unique zero of 2*x - sqrt(2*Pi)*(1 - x^2)*exp(x^2/2)*(1 + erf(x/sqrt(2))).