A246688 Triangle in which n-th row lists lexicographically ordered increasing lists of parts of all partitions of n into distinct parts.
1, 2, 1, 2, 3, 1, 3, 4, 1, 4, 2, 3, 5, 1, 2, 3, 1, 5, 2, 4, 6, 1, 2, 4, 1, 6, 2, 5, 3, 4, 7, 1, 2, 5, 1, 3, 4, 1, 7, 2, 6, 3, 5, 8, 1, 2, 6, 1, 3, 5, 1, 8, 2, 3, 4, 2, 7, 3, 6, 4, 5, 9, 1, 2, 3, 4, 1, 2, 7, 1, 3, 6, 1, 4, 5, 1, 9, 2, 3, 5, 2, 8, 3, 7, 4, 6, 10
Offset: 1
Examples
Triangle begins: [1]; [2]; [1,2], [3]; [1,3], [4]; [1,4], [2,3], [5]; [1,2,3], [1,5], [2,4], [6]; [1,2,4], [1,6], [2,5], [3,4], [7]; [1,2,5], [1,3,4], [1,7], [2,6], [3,5], [8]; [1,2,6], [1,3,5], [1,8], [2,3,4], [2,7], [3,6], [4,5], [9]; [1,2,3,4], [1,2,7], [1,3,6], [1,4,5], [1,9], [2,3,5], [2,8], [3,7], [4,6], [10];
Links
- Alois P. Heinz, Rows n = 1..32, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, i) b(n, i):= `if`(n=0, [[]], `if`(i>n, [], [map(x->[i, x[]], b(n-i, i+1))[], b(n, i+1)[]])) end: T:= n-> map(x-> x[], b(n, 1))[]: seq(T(n), n=1..12);
-
Mathematica
T[n_] := Module[{ip, lg}, ip = Reverse /@ Select[ IntegerPartitions[n], # == DeleteDuplicates[#]&]; lg = Length /@ ip // Max; SortBy[PadRight[#, lg]&][ip]]; Table[T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Oct 21 2022 *)