A246718 a(n) is the number of different ways of concatenating the numbers {3^k, k=0,...,n} so as to produce a prime number.
2, 2, 3, 44, 128, 619, 4134, 28628, 229132, 2107538, 21438790, 238754555
Offset: 1
Examples
The a(1)+a(2)+a(3)+a(4)=51 primes corresponding to the first four terms are, in increasing order, 13, 31, 139, 193, 12739, 19273, 32719, 1273981, 1278139, 1279813, 1381279, 1398127, 1812793, 1819273, 1927813, 2713981, 2718139, 2718193, 2731819, 2738119, 2738191, 2739181, 2781139, 2781193, 2781913, 2793181, 2793811, 2798113, 3127819, 3127981, 3192781, 3271981, 3279811, 3811279, 3812719, 3812791, 3912781, 3918127, 8113279, 8113927, 8119273, 8127319, 8131927, 8139127, 8193127, 9127813, 9181327, 9273181, 9327181, 9812731 and 9813127. Concatenations not shown, such as 931 = 7^2 * 19 and 1392781 = 13 * 107137, are all composite.
Programs
-
PARI
a(n,v=vector(n+1,k,Str(3^(k-1))))=sum(k=1,(n+1)!,ispseudoprime(eval(concat(vecextract(v,numtoperm(n+1,k)))))) \\ M. F. Hasler, Jan 13 2015
Extensions
Edited and verified up to n=9 by M. F. Hasler, Jan 13 2015
Comments