A246720 Number A(n,k) of partitions of n into parts of the k-th list of distinct parts in the order given by A246688; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 2, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 1, 0, 1, 1, 3, 0, 1, 0, 1, 1, 0, 2, 0, 3, 1, 1, 0, 1, 0, 1, 0, 2, 0, 4, 0, 1, 0, 1, 0, 1, 1, 1, 2, 1, 4, 1, 1, 0, 1, 1, 0, 1, 2, 0, 3, 0, 5, 0, 1, 0, 1, 1, 2, 0, 1, 2, 0, 3, 0, 5, 1, 1, 0
Offset: 0
Examples
Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, ... 0, 1, 1, 2, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 2, ... 0, 1, 0, 2, 1, 2, 0, 1, 1, 0, 3, 1, 0, 0, 2, ... 0, 1, 1, 3, 0, 2, 1, 2, 1, 0, 4, 1, 2, 0, 4, ... 0, 1, 0, 3, 0, 2, 0, 2, 1, 1, 5, 2, 0, 0, 4, ... 0, 1, 1, 4, 1, 3, 0, 2, 2, 0, 7, 2, 2, 1, 6, ... 0, 1, 0, 4, 0, 3, 0, 2, 1, 0, 8, 2, 0, 0, 6, ... 0, 1, 1, 5, 0, 3, 1, 3, 2, 0, 10, 2, 3, 0, 9, ... 0, 1, 0, 5, 1, 4, 0, 3, 2, 0, 12, 2, 0, 0, 9, ... 0, 1, 1, 6, 0, 4, 0, 3, 2, 1, 14, 3, 3, 0, 12, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..140, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, i) b(n, i):= `if`(n=0, [[]], `if`(i>n, [], [map(x->[i, x[]], b(n-i, i+1))[], b(n, i+1)[]])) end: f:= proc() local i, l; i, l:=0, []; proc(n) while n>=nops(l) do l:=[l[], b(i, 1)[]]; i:=i+1 od; l[n+1] end end(): g:= proc(n, l) option remember; `if`(n=0, 1, `if`(l=[], 0, add(g(n-l[-1]*j, subsop(-1=NULL, l)), j=0..n/l[-1]))) end: A:= (n, k)-> g(n, f(k)): seq(seq(A(n, d-n), n=0..d), d=0..16);
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, {{}}, If[i > n, {}, Join[Prepend[#, i]& /@ b[n - i, i + 1], b[n, i + 1]]]]; f = Module[{i = 0, l = {}}, Function[n, While[ n >= Length[l], l = Join[l, b[i, 1]]; i++ ]; l[[n + 1]]]]; g[n_, l_] := g[n, l] = If[n == 0, 1, If[l == {}, 0, Sum[g[n - l[[-1]] j, ReplacePart[l, -1 -> Nothing]], {j, 0, n/l[[-1]]}]]]; A[n_, k_] := g[n, f[k]]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 16}] // Flatten (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)
Comments