A246721 Number of partitions of n into parts of the n-th list of distinct parts in the order given by A246688.
1, 1, 1, 2, 0, 2, 0, 2, 2, 0, 14, 3, 4, 0, 20, 3, 2, 1, 0, 26, 24, 4, 4, 2, 1, 35, 31, 4, 24, 2, 6, 1, 0, 378, 54, 42, 42, 5, 31, 0, 2, 0, 0, 631, 78, 61, 56, 5, 45, 34, 3, 3, 2, 2, 0, 1045, 992, 110, 85, 75, 73, 6, 55, 0, 7, 42, 8, 0, 2, 0, 1772, 1581, 156
Offset: 0
Examples
a(7) = 2 because there are 2 partitions of 7 into parts 1, 4: [1,1,1,1,1,1,1], [1,1,1,4].
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..5000
Programs
-
Maple
b:= proc(n, i) b(n, i):= `if`(n=0, [[]], `if`(i>n, [], [map(x->[i, x[]], b(n-i, i+1))[], b(n, i+1)[]])) end: f:= proc() local i, l; i, l:=0, []; proc(n) while n>=nops(l) do l:=[l[], b(i, 1)[]]; i:=i+1 od; l[n+1] end end(): g:= proc(n, l) option remember; `if`(n=0, 1, `if`(l=[], 0, add(g(n-l[-1]*j, subsop(-1=NULL, l)), j=0..n/l[-1]))) end: a:= n-> g(n, f(n)): seq(a(n), n=0..80);
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, {{}}, If[i > n, {}, Join[Prepend[#, i]& /@ b[n - i, i + 1], b[n, i + 1]]]]; f = Module[{i = 0, l = {}}, Function[n, While[ n >= Length[l], l = Join[l, b[i, 1]]; i++]; l[[n + 1]]]]; g[n_, l_] := g[n, l] = If[n == 0, 1, If[l == {}, 0, Sum[g[n - l[[-1]] j, ReplacePart[l, -1 -> Nothing]], {j, 0, n/l[[-1]]}]]]; a[n_] := g[n, f[n]]; a /@ Range[0, 80] (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)
Formula
a(n) = A246720(n,n).
Comments