cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246723 Decimal expansion of r_1, the smallest radius for which a compact packing of the plane exists, with disks of radius 1 and r_1.

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 5, 1, 4, 4, 3, 3, 6, 4, 3, 8, 0, 3, 6, 0, 5, 4, 3, 1, 8, 5, 0, 5, 8, 8, 2, 1, 7, 2, 1, 6, 0, 6, 8, 1, 0, 5, 0, 3, 8, 6, 8, 6, 6, 5, 9, 7, 4, 3, 1, 3, 4, 6, 1, 4, 8, 6, 5, 4, 9, 8, 0, 7, 9, 2, 4, 5, 0, 8, 5, 3, 6, 9, 9, 4, 6, 9, 2, 0, 2, 8, 1, 1, 3, 3, 7, 9, 0, 7, 1, 9, 5, 3, 0, 3, 6, 2, 8, 1
Offset: 0

Views

Author

Jean-François Alcover, Sep 02 2014

Keywords

Examples

			0.101020514433643803605431850588217216068105038686659743...
		

Crossrefs

Cf. A246724 (r_2), A246725 (r_3), A246726 (r_4), A246727 (r_5), A002193 (r_6 = sqrt(2)-1), A246728 (r_7), A246729 (r_8), A246730 (r_9).

Programs

  • Mathematica
    RealDigits[5 - 2*Sqrt[6], 10, 104] // First

Formula

Equals 5 - 2*sqrt(6).
Equals Sum_{k>=1} binomial(2*k,k)/((k+1) * 12^k). - Amiram Eldar, Oct 04 2021
Engel expansion of 5 - 2*sqrt(6) = 1/10 + 1/(10*98) + 1/(10*98*9602) + ..., where [10, 98, 9602, ...] = A135927. See Klambauer, p. 130. - Peter Bala, Feb 01 2022
Equals exp(-arccosh(5)). - Amiram Eldar, Jul 06 2023