cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246737 T(n,k)=Number of length n+4 0..k arrays with no pair in any consecutive five terms totalling exactly k.

Original entry on oeis.org

2, 12, 2, 124, 16, 2, 424, 260, 22, 2, 1566, 1096, 548, 30, 2, 3876, 5430, 2884, 1156, 40, 2, 9368, 15960, 18966, 7612, 2436, 52, 2, 18768, 47432, 66378, 66294, 19992, 5132, 68, 2, 36250, 109552, 241544, 276762, 231414, 52112, 10812, 90, 2, 63100, 246890
Offset: 1

Views

Author

R. H. Hardin, Sep 02 2014

Keywords

Comments

Table starts
.2..12....124.....424......1566.......3876........9368........18768
.2..16....260....1096......5430......15960.......47432.......109552
.2..22....548....2884.....18966......66378......241544.......643048
.2..30...1156....7612.....66294.....276762.....1231304......3780600
.2..40...2436...19992....231414....1152576.....6272072.....22219408
.2..52...5132...52112....807630....4791012....31944440....130526848
.2..68..10812..135776...2818830...19906740...162700376....766650656
.2..90..22780..354428...9838974...82727094...828690200...4502888280
.2.120..47996..926912..34342350..343911336..4220813912..26449024896
.2.160.101124.2426008.119869158.1430080296.21498069128.155366381200

Examples

			Some solutions for n=4 k=4
..3....4....3....1....1....0....2....1....1....0....2....3....2....4....0....0
..3....1....2....4....4....1....0....4....1....0....4....4....4....3....2....0
..3....1....3....1....2....2....1....2....2....1....3....2....1....4....0....0
..4....1....4....4....1....1....1....1....4....0....3....3....4....4....0....0
..4....4....4....1....4....0....0....1....4....0....3....4....4....4....1....0
..4....1....4....1....1....0....0....1....1....2....3....3....1....3....0....2
..3....2....2....2....4....1....2....0....1....0....4....3....1....3....2....1
..4....4....1....1....1....1....0....2....2....1....3....4....2....3....0....0
		

Crossrefs

Column 2 is A174469(n+18)

Formula

Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = a(n-1) +a(n-5)
k=3: a(n) = 2*a(n-1) +a(n-4)
k=4: [order 16]
k=5: a(n) = 3*a(n-1) +a(n-2) +a(n-3) +5*a(n-4) +a(n-5) -a(n-6) -a(n-7)
k=6: [order 23]
k=7: a(n) = 4*a(n-1) +4*a(n-2) +4*a(n-3) +18*a(n-4) +12*a(n-5) -4*a(n-7) -a(n-8)
k=8: [order 24]
k=9: a(n) = 6*a(n-1) +4*a(n-2) +6*a(n-3) +38*a(n-4) +18*a(n-5) -6*a(n-7) -a(n-8)
Empirical for row n:
n=1: a(n) = 3*a(n-1) -8*a(n-3) +6*a(n-4) +6*a(n-5) -8*a(n-6) +3*a(n-8) -a(n-9)
n=2: [order 11]
n=3: [order 13]
n=4: [order 15]
n=5: [order 17]
n=6: [order 19]
n=7: [order 21]