A246743 Number of length 6+4 0..n arrays with no pair in any consecutive five terms totalling exactly n.
2, 52, 5132, 52112, 807630, 4791012, 31944440, 130526848, 540366650, 1692606260, 5207709252, 13469585232, 33976308422, 76317563812, 167224561520, 337577831552, 666340346610, 1237996390068, 2255112904700, 3921870847120
Offset: 1
Keywords
Examples
Some solutions for n=4 ..1....4....1....2....2....4....4....4....0....1....0....2....4....3....2....1 ..1....4....1....3....3....4....1....1....0....1....0....3....4....3....3....0 ..0....1....2....0....0....4....1....4....2....0....0....0....4....3....3....0 ..1....1....4....0....3....2....2....4....0....0....0....3....3....2....4....0 ..0....1....4....3....0....4....4....4....3....1....1....0....2....0....3....0 ..2....2....1....0....0....3....1....4....0....0....0....0....3....0....4....2 ..1....1....4....3....0....4....1....4....0....1....0....3....3....0....4....1 ..0....1....1....3....3....3....4....1....2....2....0....3....3....3....4....0 ..1....0....4....0....2....3....2....2....3....1....0....0....0....0....4....0 ..0....1....1....3....3....3....1....1....0....0....2....3....3....2....3....0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..60
Formula
Empirical: a(n) = 3*a(n-1) +5*a(n-2) -23*a(n-3) -4*a(n-4) +76*a(n-5) -28*a(n-6) -140*a(n-7) +98*a(n-8) +154*a(n-9) -154*a(n-10) -98*a(n-11) +140*a(n-12) +28*a(n-13) -76*a(n-14) +4*a(n-15) +23*a(n-16) -5*a(n-17) -3*a(n-18) +a(n-19)
Comments