cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246749 Decimal expansion of F'(rho), an auxiliary constant associated with the asymptotic number of values of the Euler totient function less than a given number, where the function F and the constant rho are defined in A246746.

Original entry on oeis.org

5, 6, 9, 7, 7, 5, 8, 9, 3, 4, 2, 3, 0, 1, 9, 2, 6, 7, 5, 7, 5, 2, 9, 1, 3, 7, 0, 4, 6, 8, 5, 2, 4, 7, 8, 9, 7, 8, 5, 8, 1, 0, 1, 9, 8, 2, 1, 7, 8, 3, 5, 7, 3, 5, 9, 3, 4, 5, 9, 5, 6, 7, 1, 7, 5, 8, 4, 1, 1, 4, 4, 0, 5, 3, 8, 6, 6, 0, 6, 7, 7, 6, 8, 3, 1, 7, 8, 4, 7, 5, 1, 5, 7, 4, 3, 8, 9, 2, 8, 8, 5
Offset: 1

Views

Author

Jean-François Alcover, Sep 02 2014

Keywords

Examples

			5.6977589342301926757529137046852478978581019821783573593459567...
		

Crossrefs

Cf. A246746.

Programs

  • Mathematica
    digits = 101; F[x_?NumericQ] := NSum[((k + 1)*Log[k + 1] - k*Log[k] - 1)*x^k, {k, 1, Infinity}, WorkingPrecision -> digits + 10, NSumTerms -> 1000]; F'[x_?NumericQ] := NSum[((k + 1)*Log[k + 1] - k*Log[k] - 1)*k*x^(k - 1), {k, 1, Infinity}, WorkingPrecision -> digits + 10, NSumTerms -> 1000]; rho = x /. FindRoot[F[x] == 1, {x, 5/10, 6/10}, WorkingPrecision -> digits + 10]; RealDigits[F'[rho], 10, digits] // First

Formula

Let F(x) = sum_{k >= 1} ((k+1)*log(k+1) - k*log(k) - 1)*x^k.
F'(rho), where rho is the unique solution on [0,1) of F(rho)=1,