A246749 Decimal expansion of F'(rho), an auxiliary constant associated with the asymptotic number of values of the Euler totient function less than a given number, where the function F and the constant rho are defined in A246746.
5, 6, 9, 7, 7, 5, 8, 9, 3, 4, 2, 3, 0, 1, 9, 2, 6, 7, 5, 7, 5, 2, 9, 1, 3, 7, 0, 4, 6, 8, 5, 2, 4, 7, 8, 9, 7, 8, 5, 8, 1, 0, 1, 9, 8, 2, 1, 7, 8, 3, 5, 7, 3, 5, 9, 3, 4, 5, 9, 5, 6, 7, 1, 7, 5, 8, 4, 1, 1, 4, 4, 0, 5, 3, 8, 6, 6, 0, 6, 7, 7, 6, 8, 3, 1, 7, 8, 4, 7, 5, 1, 5, 7, 4, 3, 8, 9, 2, 8, 8, 5
Offset: 1
Examples
5.6977589342301926757529137046852478978581019821783573593459567...
Links
- Steven R. Finch, Errata and Addenda to Mathematical Constants, p. 16.
- Kevin Ford, The distribution of Totients
Crossrefs
Cf. A246746.
Programs
-
Mathematica
digits = 101; F[x_?NumericQ] := NSum[((k + 1)*Log[k + 1] - k*Log[k] - 1)*x^k, {k, 1, Infinity}, WorkingPrecision -> digits + 10, NSumTerms -> 1000]; F'[x_?NumericQ] := NSum[((k + 1)*Log[k + 1] - k*Log[k] - 1)*k*x^(k - 1), {k, 1, Infinity}, WorkingPrecision -> digits + 10, NSumTerms -> 1000]; rho = x /. FindRoot[F[x] == 1, {x, 5/10, 6/10}, WorkingPrecision -> digits + 10]; RealDigits[F'[rho], 10, digits] // First
Formula
Let F(x) = sum_{k >= 1} ((k+1)*log(k+1) - k*log(k) - 1)*x^k.
F'(rho), where rho is the unique solution on [0,1) of F(rho)=1,