A246757 Largest n-digit number divisible by the product of its decimal digits.
9, 36, 816, 9612, 93744, 973728, 9939915, 99221112, 997711344, 9993393711, 99934212672, 999641938176, 9999121936392, 99996414731136, 999994123418112, 9999982411646976, 99999318116613312, 999991631331122112, 9999944111773994112, 99999911232931433472, 999999832211912282112
Offset: 1
Links
- Max Alekseyev, Table of n, a(n) for n = 1..30
Crossrefs
Subsequence of A007602.
Programs
-
PARI
{ A246757(n) = my(m,d,p,q); m=n\2; forstep(k=10^m-1,(10^m-1)/9,-1, d=digits(k); q=prod(i=1,#d,d[i]); if(q==0,next); forstep(s=(((k+1)*10^(n-m))\q)*q,k*10^(n-m),-q, d=digits(s); p=prod(i=1,#d,d[i]); if(p==0 || s%p,next); return(s) )) }
-
Python
from operator import mul from functools import reduce def A246757(n): for i in range(10**n-1,int('1'*n)-1,-1): pd = reduce(mul,(int(d) for d in str(i))) if pd and not i % pd: return i # Chai Wah Wu, Sep 08 2014
Comments