A246783 Smallest number m such that all the n numbers np(m+k-1), 0 < k < n+1 are equal, where np(t) is number of primes p with prime(t) < p < prime(t)^(1+1/t).
1, 1, 1, 1, 67, 67, 67, 67, 67, 54412, 161342, 161342, 1214143, 9915018, 9915018, 68964006, 68964006, 810832784, 19867608968, 52415066804, 119937255921, 272007811177
Offset: 1
Examples
a(9) = 67, since all the nine numbers np(67), np(67+1), np(67+2), ..., np(67+8) are equal and 67 is the smallest such number. Note that np(67) = 5.
Programs
-
Mathematica
np[n_]:=Length[Select[Range[Prime[n]+1,Prime[n]^(1+1/n)], PrimeQ]];a[n_]:=(For[m=1,Length[Union[Table[np[m+k-1],{k,n}]]]!=1,m++];m);Do[Print[a[n]],{n,15}]
Extensions
a(16)-a(22) from Robert Price, Nov 12 2014
Comments