A246788 Triangle read by rows: T(n,k) is the coefficient A_k in the transformation Sum_{k=0..n} (k+1)*x^k = Sum_{k=0..n} A_k*(x+2)^k.
1, -3, 2, 9, -10, 3, -23, 38, -21, 4, 57, -122, 99, -36, 5, -135, 358, -381, 204, -55, 6, 313, -986, 1299, -916, 365, -78, 7, -711, 2598, -4077, 3564, -1875, 594, -105, 8, 1593, -6618, 12051, -12564, 8205, -3438, 903, -136, 9, -3527, 16422, -34029, 41196, -32115, 16722, -5817, 1304, -171, 10
Offset: 0
Examples
1; -3, 2; 9, -10, 3; -23, 38, -21, 4; 57, -122, 99, -36, 5; -135, 358, -381, 204, -55, 6; 313, -986, 1299, -916, 365, -78, 7; -711, 2598, -4077, 3564, -1875, 594, -105, 8; 1593, -6618, 12051, -12564, 8205, -3438, 903, -136, 9; -3527, 16422, -34029, 41196, -32115, 16722, -5817, 1304, -171, 10;
Programs
-
PARI
T(n,k) = (k+1)*sum(i=0,n-k,(-2)^i*binomial(i+k+1,k+1)) for(n=0,10,for(k=0,n,print1(T(n,k),", ")))
Formula
T(n,0) = ((6*n+8)*(-2)^n+1)/9, for n >= 0.
T(n,n-1) = -n*(2*n+1), for n >= 1.
Row n sums to A001057(n+1).
Comments