cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A246797 Triangle read by rows: T(n,k) is the coefficient A_k in the transformation Sum_{k=0..n} (k+1)*x^k = Sum_{k=0..n} A_k*(x-2)^k.

Original entry on oeis.org

1, 5, 2, 17, 14, 3, 49, 62, 27, 4, 129, 222, 147, 44, 5, 321, 702, 627, 284, 65, 6, 769, 2046, 2307, 1404, 485, 90, 7, 1793, 5630, 7683, 5884, 2725, 762, 119, 8, 4097, 14846, 23811, 22012, 12805, 4794, 1127, 152, 9, 9217, 37886, 69891, 75772, 53125, 24954, 7847, 1592, 189, 10
Offset: 0

Views

Author

Derek Orr, Nov 15 2014

Keywords

Comments

Consider the transformation 1 + 2x + 3x^2 + 4x^3 + ... + (n+1)*x^n = A_0*(x-2)^0 + A_1*(x-2)^1 + A_2*(x-2)^2 + ... + A_n*(x-2)^n. This sequence gives A_0, ... A_n as the entries in the n-th row of this triangle, starting at n = 0.

Examples

			Triangle starts:
1;
5,        2;
17,      14,     3;
49,      62,    27,     4;
129,    222,   147,    44,     5;
321,    702,   627,   284,    65,     6;
769,   2046,  2307,  1404,   485,    90,    7;
1793,  5630,  7683,  5884,  2725,   762,  119,    8;
4097, 14846, 23811, 22012, 12805,  4794, 1127,  152,   9;
9217, 37886, 69891, 75772, 53125, 24954, 7847, 1592, 189, 10;
...
		

Crossrefs

Programs

  • PARI
    T(n,k) = (k+1)*sum(i=0,n-k,2^i*binomial(i+k+1,k+1))
    for(n=0,10,for(k=0,n,print1(T(n,k),", ")))

Formula

T(n,0) = n*2^(n+1)+1, for n >= 0.
T(n,n-1) = n*(2*n+3), for n >= 1.
Row n sums to A014915(n-1) = T(n,0) of A246799.

A246799 Triangle read by rows: T(n,k) is the coefficient A_k in the transformation Sum_{k=0..n} (k+1)*x^k = Sum_{k=0..n} A_k*(x-3)^k.

Original entry on oeis.org

1, 7, 2, 34, 20, 3, 142, 128, 39, 4, 547, 668, 309, 64, 5, 2005, 3098, 1929, 604, 95, 6, 7108, 13304, 10434, 4384, 1040, 132, 7, 24604, 54128, 51258, 27064, 8600, 1644, 175, 8, 83653, 211592, 234966, 149536, 59630, 15252, 2443, 224, 9, 280483, 802082, 1022286, 761896, 365810, 117312, 25123, 3464, 279, 10
Offset: 0

Views

Author

Derek Orr, Nov 15 2014

Keywords

Comments

Consider the transformation 1 + 2x + 3x^2 + 4x^3 + ... + (n+1)*x^n = A_0*(x-3)^0 + A_1*(x-3)^1 + A_2*(x-3)^2 + ... + A_n*(x-3)^n. This sequence gives A_0, ... A_n as the entries in the n-th row of this triangle, starting at n = 0.

Examples

			Triangle starts:
1;
7,           2;
34,         20,       3;
142,       128,      39,      4;
547,       668,     309,     64,      5;
2005,     3098,    1929,    604,     95,      6;
7108,    13304,   10434,   4384,   1040,    132,     7;
24604,   54128,   51258,  27064,   8600,   1644,   175,    8;
83653,  211592,  234966, 149536,  59630,  15252,  2443,  224,   9;
280483, 802082, 1022286, 761896, 365810, 117312, 25123, 3464, 279, 10;
...
		

Crossrefs

Programs

  • PARI
    T(n, k) = (k+1)*sum(i=0, n-k, 3^i*binomial(i+k+1, k+1))
    for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")))

Formula

T(n,0) = ((2*n+1)*3^(n+1) + 1)/4, for n >= 0.
T(n,n-1) = n*(3*n+4), for n >= 1.
Row n sums to A014916(n+1) = T(2*n+1,0) of A246788.

A246798 Triangle read by rows: T(n,k) is the coefficient A_k in the transformation Sum_{k=0..n} (k+1)*x^k = Sum_{k=0..n} A_k*(x+3)^k.

Original entry on oeis.org

1, -5, 2, 22, -16, 3, -86, 92, -33, 4, 319, -448, 237, -56, 5, -1139, 1982, -1383, 484, -85, 6, 3964, -8224, 7122, -3296, 860, -120, 7, -13532, 32600, -33702, 19384, -6700, 1392, -161, 8, 45517, -124864, 150006, -103088, 44330, -12216, 2107, -208, 9, -151313, 465626, -637314, 509272, -261850, 89844, -20573, 3032, -261, 10
Offset: 0

Views

Author

Derek Orr, Nov 15 2014

Keywords

Comments

Consider the transformation 1 + 2x + 3x^2 + 4x^3 + ... + (n+1)*x^n = A_0*(x+3)^0 + A_1*(x+3)^1 + A_2*(x+3)^2 + ... + A_n*(x+3)^n. This sequence gives A_0, ... A_n as the entries in the n-th row of this triangle, starting at n = 0.

Examples

			Triangle starts:
1;
-5,           2;
22,         -16,       3;
-86,         92,     -33,       4;
319,       -448,     237,     -56,       5;
-1139,     1982,   -1383,     484,     -85,      6;
3964,     -8224,    7122,   -3296,     860,   -120,      7;
-13532,   32600,  -33702,   19384,   -6700,   1392,   -161,    8;
45517,  -124864,  150006, -103088,   44330, -12216,   2107, -208,    9;
-151313, 465626, -637314,  509272, -261850,  89844, -20573, 3032, -261, 10;
...
		

Crossrefs

Programs

  • PARI
    T(n, k) = (k+1)*sum(i=0, n-k, (-3)^i*binomial(i+k+1, k+1))
    for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")))

Formula

T(n,0) = (1-(4*n+5)*(-3)^(n+1))/16, for n >= 0.
T(n,n-1) = -n*(3*n+2), for n >= 1.
Row n sums to (-1)^n*A045883(n+1) = T(n,0) of A246788.
Showing 1-3 of 3 results.