A246811 Expansion of phi(x)^2 * psi(x^4) in powers of x where phi(), psi() are Ramanujan theta functions.
1, 4, 4, 0, 5, 12, 4, 0, 8, 12, 8, 0, 5, 16, 12, 0, 8, 24, 4, 0, 16, 12, 12, 0, 9, 24, 12, 0, 8, 36, 12, 0, 16, 12, 16, 0, 8, 28, 16, 0, 17, 36, 8, 0, 24, 24, 8, 0, 8, 36, 28, 0, 16, 36, 12, 0, 16, 24, 20, 0, 13, 24, 24, 0, 24, 60, 8, 0, 16, 36, 16, 0, 16, 28
Offset: 0
Keywords
Examples
G.f. = 1 + 4*x + 4*x^2 + 5*x^4 + 12*x^5 + 4*x^6 + 8*x^8 + 12*x^9 + ... G.f. = q + 4*q^3 + 4*q^5 + 5*q^9 + 12*q^11 + 4*q^13 + 8*q^17 + 12*q^19 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2500
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x]^2 EllipticTheta[ 2, 0, x^2] / (2 x^(1/2)), {x, 0, n}]; a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x^(1/2)]^4 / (16 x^(1/2) EllipticTheta[ 3, 0, x^2]), {x, 0, n}];
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^10 * eta(x^8 + A)^2 / (eta(x + A)^4 * eta(x^4 + A)^5), n))};
Formula
Expansion of psi(x)^4 / phi(x^2) in powers of x where phi(), psi() are Ramanujan theta functions.
Expansion of q^(-1/2) * eta(q^2)^10 * eta(q^8)^2 / (eta(q)^4 * eta(q^4)^5) in powers of q.
Euler transform of period 8 sequence [4, -6, 4, -1, 4, -6, 4, -3, ...].
Comments