A246834 A(n,k) is the concatenation of n and k*n in binary; square array A(n,k), n>=0, k>=0, read by antidiagonals.
0, 0, 1, 0, 3, 2, 0, 6, 10, 3, 0, 7, 20, 15, 4, 0, 12, 22, 30, 36, 5, 0, 13, 40, 57, 72, 45, 6, 0, 14, 42, 60, 76, 90, 54, 7, 0, 15, 44, 63, 144, 95, 108, 63, 8, 0, 24, 46, 114, 148, 180, 210, 126, 136, 9, 0, 25, 80, 117, 152, 185, 216, 245, 272, 153, 10
Offset: 0
Examples
Square array A(n,k) begins: 0, 0, 0, 0, 0, 0, 0, 0, 0, ... 1, 3, 6, 7, 12, 13, 14, 15, 24, ... 2, 10, 20, 22, 40, 42, 44, 46, 80, ... 3, 15, 30, 57, 60, 63, 114, 117, 120, ... 4, 36, 72, 76, 144, 148, 152, 156, 288, ... 5, 45, 90, 95, 180, 185, 190, 355, 360, ... 6, 54, 108, 210, 216, 222, 420, 426, 432, ... 7, 63, 126, 245, 252, 483, 490, 497, 504, ... 8, 136, 272, 280, 544, 552, 560, 568, 1088, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..140, flattened
Programs
-
Maple
f:= proc(i, j) local r, h, k; r:=0; h:=0; k:=j; while k>0 do r:=r+2^h*irem(k, 2, 'k'); h:=h+1 od; k:=i; while k>0 do r:=r+2^h*irem(k, 2, 'k'); h:=h+1 od; r end: A:= (n, k)-> f(n, k*n): seq(seq(A(n, d-n), n=0..d), d=0..14);