A246848 Decimal expansion of 1/(1+sqrt(e)), a constant appearing in the computation of a limiting probability concerning the number of cycles of a given length in a random permutation.
3, 7, 7, 5, 4, 0, 6, 6, 8, 7, 9, 8, 1, 4, 5, 4, 3, 5, 3, 6, 1, 0, 9, 9, 4, 3, 4, 2, 5, 4, 4, 9, 1, 5, 2, 1, 2, 4, 6, 7, 2, 0, 6, 3, 4, 6, 9, 1, 0, 8, 9, 8, 3, 6, 9, 4, 0, 5, 6, 2, 8, 3, 7, 3, 4, 1, 4, 5, 5, 0, 0, 4, 3, 5, 9, 9, 7, 5, 3, 2, 0, 4, 9, 7, 4, 1, 6, 3, 0, 5, 2, 7, 5, 2, 5, 7, 6, 2, 6, 9, 3
Offset: 0
Examples
0.37754066879814543536109943425449152124672063469108983694...
Links
- Steven R. Finch, Errata and Addenda to Mathematical Constants, p. 29.
- Michael Lugo, The number of cycles of specified normalized length in permutations, arXiv:0909.2909 [math.CO]
Programs
-
Mathematica
RealDigits[1/(1 + Sqrt[E]), 10, 101] // First
-
PARI
1/(1+sqrt(exp(1))) \\ Michel Marcus, Sep 05 2014
Comments