cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246861 G.f. satisfies: A(x) = Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k)^2 * (x*A(x))^(2*k).

Original entry on oeis.org

1, 1, 1, 2, 7, 21, 54, 141, 407, 1231, 3691, 10990, 33144, 101674, 314679, 977289, 3047527, 9557503, 30133759, 95390622, 302960929, 965282651, 3085146472, 9888455045, 31774215928, 102334358736, 330298415136, 1068242904256, 3461372341327, 11235251353747, 36527859658661
Offset: 0

Views

Author

Paul D. Hanna, Sep 05 2014

Keywords

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 7*x^4 + 21*x^5 + 54*x^6 + 141*x^7 + ...
where the g.f. A = A(x) equals the binomial series:
A(x) = 1 + x*(1 + x^2*A^2) + x^2*(1 + 2^2*x^2*A^2 + x^4*A^4)
+ x^3*(1 + 3^2*x^2*A^2 + 3^2*x^4*A^4 + x^6*A^6)
+ x^4*(1 + 4^2*x^2*A^2 + 6^2*x^4*A^4 + 4^2*x^6*A^6 + x^8*A^8)
+ x^5*(1 + 5^2*x^2*A^2 + 10^2*x^4*A^4 + 10^2*x^6*A^6 + 5^2*x^8*A^8 + x^10*A^10) + ...
Let A = g.f. A(x), then the g.f. satisfies:
log(A(x)) = x*(1 + x^2*A^2) + x^2*(1 + 6*x^2*A^2 + x^4*A^4)/2
+ x^3*(1 + 15*x^2*A^2 + 15*x^4*A^4 + x^6*A^6)/3
+ x^4*(1 + 28*x^2*A^2 + 70*x^4*A^4 + 28*x^6*A^6 + x^8*A^8)/4
+ x^5*(1 + 45*x^2*A^2 + 210*x^4*A^4 + 210*x^6*A^6 + 45*x^8*A^8 + x^10*A^10)/5 + ...
RELATED SERIES:
A(x)^2 = 1 + 2*x + 3*x^2 + 6*x^3 + 19*x^4 + 60*x^5 + 168*x^6 + ...
A(x)^3 = 1 + 3*x + 6*x^2 + 13*x^3 + 39*x^4 + 126*x^5 + 376*x^6 + ...
A(x)^4 = 1 + 4*x + 10*x^2 + 24*x^3 + 71*x^4 + 232*x^5 + 726*x^6 + ...
A(x)^6 = 1 + 6*x + 21*x^2 + 62*x^3 + 192*x^4 + 642*x^5 + 2145*x^6 + ...
where 1 = (1-x)^2*A(x)^2 - 2*x^3*(1+x)*A(x)^4 + x^6*A(x)^6.
Let G(x) = x/Series_Reversion(x*A(x)), then G(x*A(x)) = A(x), where
G(x) = x + x^3 + 1 + 2*x^4 - 2*x^8 + 4*x^12 - 10*x^16 + 28*x^20 - 84*x^24 + ...
G(x) = x + x^3 + sqrt(1 + 4*x^4).
		

Crossrefs

Programs

  • PARI
    /* By definition: */
    {a(n)=local(A=1); for(i=1,n, A=sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^2*(x*A)^(2*k)) +x*O(x^n))); polcoeff(A, n)}
    for(n=0, 35, print1(a(n), ", "))
    
  • PARI
    /* (1) From a binomial series identity: */
    {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, x^m * sum(k=0, n, binomial(m+k, k)^2*(x*A +x*O(x^n))^(2*k)) * (1-x^2*A^2)^(2*m+1) )); polcoeff(A, n)}
    for(n=0, 35, print1(a(n), ", "))
    
  • PARI
    /* (2) From a binomial series identity: */
    {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n\2, x^(3*m)*(A +x*O(x^n))^(2*m)*sum(k=0, n, binomial(m+k, k)^2*x^k))); polcoeff(A, n)}
    for(n=0, 35, print1(a(n), ", "))
    
  • PARI
    /* (3) From a binomial series identity: */
    {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n\2, x^(3*m)*A^(2*m) * sum(k=0, m, binomial(m, k)^2*x^k) / (1-x +x*O(x^n))^(2*m+1) )); polcoeff(A, n)}
    for(n=0, 35, print1(a(n), ", "))
    
  • PARI
    /* (4) From exponential series formula: */
    {a(n)=local(A=1); for(i=1,n, A=exp(sum(m=1, n, ((1+x*A)^(2*m) + (1-x*A)^(2*m))/2 * x^m/m) +x*O(x^n))); polcoeff(A, n)}
    for(n=0, 35, print1(a(n), ", "))
    
  • PARI
    /* (6) From functional equation: */
    {a(n)=local(A=1); for(i=1,n, A =  1 / sqrt((1 - x*(1 - x*A)^2) * (1 - x*(1 + x*A)^2)) +x*O(x^n)); polcoeff(A, n)}
    for(n=0, 40, print1(a(n), ", "))
    
  • PARI
    /* (7) From functional equation: */
    {a(n)=local(A=1); for(i=1,n, A = x*A + x^3*A^3 + sqrt(1 + 4*x^4*A^4 +x*O(x^n)) ); polcoeff(A, n)}
    for(n=0, 40, print1(a(n), ", "))
    
  • PARI
    /* (8) From explicit formula: */
    {a(n)=local(A=1); A= 1/x * serreverse( x / (x + x^3 + sqrt(1 + 4*x^4 +x*O(x^n) )) ); polcoeff(A, n)}
    for(n=0, 40, print1(a(n), ", "))

Formula

G.f. A(x) satisfies:
(1) A(x) = Sum_{n>=0} x^n * [Sum_{k>=0} C(n+k,k)^2 *(x*A(x))^(2*k)] * (1 - x^2*A(x)^2)^(2*n+1).
(2) A(x) = Sum_{n>=0} x^(3*n) * A(x)^(2*n) * [Sum_{k>=0} C(n+k,k)^2 * x^k].
(3) A(x) = Sum_{n>=0} x^(3*n) * A(x)^(2*n) * [Sum_{k=0..n} C(n,k)^2 * x^k] /(1-x)^(2n+1).
(4) A(x) = exp( Sum_{n>=1} (x^n/n) * Sum_{k=0..n} C(2*n,2*k) * (x*A(x))^(2*k) ).
(5) A(x) = exp( Sum_{n>=1} (x^n/n) * ((1 + x*A(x))^(2*n) + (1 - x*A(x))^(2*n))/2 ).
(6) A(x) = 1 / sqrt((1 - x*(1 - x*A(x))^2) * (1 - x*(1 + x*A(x))^2)).
(7) A(x) = x*A(x) + x^3*A(x)^3 + sqrt(1 + 4*x^4*A(x)^4).
(8) A(x) = 1/x * Series_Reversion( x / (x + x^3 + sqrt(1 + 4*x^4)) ).