A246862 Expansion of phi(x) * f(x^3, x^5) in powers of x where phi(), f() are Ramanujan theta functions.
1, 2, 0, 1, 4, 1, 2, 2, 0, 4, 0, 0, 2, 0, 3, 2, 2, 0, 3, 4, 0, 2, 2, 2, 0, 2, 0, 2, 2, 0, 4, 0, 0, 1, 4, 0, 2, 2, 0, 5, 2, 2, 2, 4, 0, 0, 0, 0, 2, 4, 2, 0, 2, 0, 4, 2, 0, 0, 2, 0, 1, 2, 0, 2, 6, 0, 0, 4, 1, 8, 0, 0, 2, 0, 0, 2, 2, 2, 2, 0, 0, 2, 4, 0, 4, 2, 2
Offset: 0
Keywords
Examples
G.f. = 1 + 2*x + x^3 + 4*x^4 + x^5 + 2*x^6 + 2*x^7 + 4*x^9 + 2*x^12 + ... G.f. = q + 2*q^17 + q^49 + 4*q^65 + q^81 + 2*q^97 + 2*q^113 + 4*q^145 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Crossrefs
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] QPochhammer[ -x^3, x^8] QPochhammer[ -x^5, x^8] QPochhammer[ x^8], {x, 0, n}];
-
PARI
{a(n) = if( n<0, 0, issquare(16 * n + 1) + 2 * sum(i=1, sqrtint(n), issquare(16 * (n - i^2) + 1)))};
Formula
Euler transform of period 16 sequence [ 2, -3, 3, -1, 3, -4, 2, -2, 2, -4, 3, -1, 3, -3, 2, -2, ...].
a(9*n + 2) = a(9*n + 8) = 0. a(9*n + 5) = A246863(n).
Comments