cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246868 Largest number that can be encoded as Product_{i:lambda} prime(i) for a partition lambda of n into distinct parts.

Original entry on oeis.org

1, 2, 3, 6, 10, 15, 30, 42, 70, 110, 210, 330, 462, 770, 1155, 2310, 2730, 4290, 6006, 10010, 15015, 30030, 39270, 46410, 72930, 102102, 170170, 255255, 510510, 570570, 746130, 903210, 1385670, 1939938, 3233230, 4849845, 9699690, 11741730, 14804790, 17160990
Offset: 0

Views

Author

Alois P. Heinz, Sep 05 2014

Keywords

Comments

The number of (distinct) prime factors in a(n) is A003056(n) = floor((sqrt(1+8*n)-1)/2).

Examples

			The partitions of n=5 into distinct parts are {[5], [4,1], [3,2]}, encodings give {prime(5), prime(4)*prime(1), prime(3)*prime(2)} = {11, 7*2, 5*3} = {11, 14, 15}.  So a(5) = max(11,14,15) = 15.
		

Crossrefs

Last elements of rows of A246867.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          max(b(n, i-1), `if`(i>n, 0, b(n-i, i-1)*ithprime(i)))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..50);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Max[b[n, i-1], If[i>n, 0, b[n - i, i-1]*Prime[i]]]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Feb 07 2017, translated from Maple *)

Formula

a(n) = A246867(n,A000009(n)).