A246868 Largest number that can be encoded as Product_{i:lambda} prime(i) for a partition lambda of n into distinct parts.
1, 2, 3, 6, 10, 15, 30, 42, 70, 110, 210, 330, 462, 770, 1155, 2310, 2730, 4290, 6006, 10010, 15015, 30030, 39270, 46410, 72930, 102102, 170170, 255255, 510510, 570570, 746130, 903210, 1385670, 1939938, 3233230, 4849845, 9699690, 11741730, 14804790, 17160990
Offset: 0
Keywords
Examples
The partitions of n=5 into distinct parts are {[5], [4,1], [3,2]}, encodings give {prime(5), prime(4)*prime(1), prime(3)*prime(2)} = {11, 7*2, 5*3} = {11, 14, 15}. So a(5) = max(11,14,15) = 15.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..3000
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, max(b(n, i-1), `if`(i>n, 0, b(n-i, i-1)*ithprime(i))))) end: a:= n-> b(n$2): seq(a(n), n=0..50);
-
Mathematica
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Max[b[n, i-1], If[i>n, 0, b[n - i, i-1]*Prime[i]]]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Feb 07 2017, translated from Maple *)
Comments