cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246879 Decimal expansion of the constant W(1) appearing in the asymptotic expression of the probability that two independent, random n-permutations have the same cycle type as W(1)/n^2.

Original entry on oeis.org

4, 2, 6, 3, 4, 0, 3, 5, 1, 4, 1, 5, 2, 6, 6, 9, 7, 7, 8, 2, 9, 8, 9, 3, 5, 0, 5, 5, 1, 6, 6, 1, 9, 6, 6, 9, 0, 5, 3, 5, 0, 8, 1, 8, 1, 7, 4, 7, 9, 4, 1, 1, 6, 0, 5, 0, 6, 7, 7, 1, 2, 5, 6, 3, 2, 0, 3, 7, 1, 9, 1, 4, 5, 8, 2, 7, 8, 5, 7, 3, 4, 6, 1, 7, 2, 3, 5, 6, 1, 3, 4, 4, 8, 1, 3, 2, 9, 8, 7, 7, 3, 0, 6, 3, 5
Offset: 1

Views

Author

Jean-François Alcover, Sep 08 2014

Keywords

Comments

See A087132.

Examples

			4.2634035141526697782989350551661966905350818174794...
		

Crossrefs

Cf. A087132.

Programs

  • Maple
    evalf(product(BesselI(0,2/k), k=1..infinity), 100) # Vaclav Kotesovec, Sep 17 2014
  • Mathematica
    digits = 50; m0 = 1000; dm = 1000; tail[m_] := PolyGamma[1, m] - (1/24)*PolyGamma[3, m] + PolyGamma[5, m]/1080 - (11*PolyGamma[7, m])/967680 + (19*PolyGamma[9, m])/217728000 - (43*PolyGamma[11, m])/94058496000; Clear[f]; f[m_] := f[m] = Sum[Log[BesselI[0, 2/k]], {k, 1, m - 1}] + tail[m] // N[#, digits + 5] &; f[m0]; f[m = m0 + dm]; While[RealDigits[f[m], 10, digits + 2] != RealDigits[f[m - dm], 10, digits + 2], Print["f(", m, ") = ", f[m]]; m = m + dm];RealDigits[Exp[f[m]], 10, digits] // First

Formula

prod_{k>=1} I_0(2/k), where I_0 is the zeroth modified Bessel function.

Extensions

More terms from Vaclav Kotesovec, Sep 17 2014