A246885 Those n for which the coefficients of x^n in the reciprocal of 1+x+x^8+...+x^(i^3)+... are odd.
0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15, 16, 19, 20, 23, 29, 32, 34, 35, 37, 45, 47, 48, 49, 53, 54, 57, 58, 67, 69, 71, 73, 75, 85, 86, 99, 101, 107, 108, 109, 110, 115, 121, 123, 124, 127, 128, 129, 131, 132, 135, 137, 141, 143, 155, 157, 160, 161, 162, 163, 169, 177, 183, 189, 193, 195, 197, 199, 203
Offset: 1
Keywords
Examples
The reciprocal of 1+x+x^8+x^27+... begins 1 -x +x^2 -x^3 +x^4 -x^5 +x^6 -x^7 +x^9 -2*x^10 +... So the first few values of a(n) are 0,1,2,3,4,5,6,7,9... .
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- J. N. Cooper, D. Eichhorn and K. O'Bryant, Reciprocals of binary power series, arXiv:math/0506496 [math.NT], 2005.
Crossrefs
Cf. A023358.
Programs
-
Maple
b:= proc(n) option remember; irem(`if`(n=0, 1, `if`(n<0, 0, add(b(n-i^3), i=1..iroot(n, 3)))), 2) end: a:= proc(n) option remember; local k; for k from 1+ `if`(n=1, -1, a(n-1)) while b(k)=0 do od; k end: seq(a(n), n=1..80); # Alois P. Heinz, Sep 08 2014
-
Mathematica
iend=10; seq=Flatten[Position[Delete[Mod[CoefficientList[Series[1/Sum[x^(i^3),{i,0,iend}],{x,0,iend^3}],x],2],1],1]]; Print[seq];
Comments