A246892 T(n,k)=Number of length n+4 0..k arrays with some pair in every consecutive five terms totalling exactly k.
30, 231, 58, 900, 673, 112, 2701, 3364, 1961, 216, 6210, 12481, 12544, 5711, 416, 12931, 33294, 57585, 46656, 16621, 802, 23400, 79345, 177648, 264981, 173056, 48393, 1546, 40281, 159688, 484297, 942216, 1216081, 643204, 140893, 2980, 63750
Offset: 1
Examples
Some solutions for n=3 k=4 ..0....0....2....0....2....3....4....3....1....2....3....1....4....4....3....4 ..3....4....0....1....3....0....2....2....1....0....3....1....1....1....0....1 ..0....0....1....0....4....0....1....3....1....3....0....2....3....0....4....4 ..2....4....2....3....0....4....3....4....2....0....1....4....0....2....2....3 ..1....1....0....1....1....4....1....2....3....2....2....3....2....2....1....1 ..4....0....2....1....1....4....2....1....1....4....2....2....1....2....0....2 ..4....1....2....2....4....3....0....3....2....1....3....4....3....1....2....2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..1835
Crossrefs
Column 1 is A135492(n+4)
Formula
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2) +a(n-3) +a(n-4)
k=2: [order 14]
k=3: [order 10]
k=4: [order 31]
k=5: [order 14]
k=6: [order 39]
k=7: [order 15]
k=8: [order 40]
k=9: [order 15]
Empirical for row n:
n=1: a(n) = 2*a(n-1) +2*a(n-2) -6*a(n-3) +6*a(n-5) -2*a(n-6) -2*a(n-7) +a(n-8)
n=2: [order 10]
n=3: [order 12]
n=4: [order 13]
n=5: [order 14]
n=6: [order 16]
n=7: [order 18]
Comments