cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246900 Decimal expansion of the constant c = Sum_{n>=0} binomial(n-1 + 1/2^(n-1), n).

Original entry on oeis.org

2, 5, 5, 5, 0, 0, 2, 4, 8, 4, 3, 6, 1, 0, 1, 3, 6, 0, 8, 0, 4, 7, 0, 4, 9, 6, 9, 7, 9, 6, 2, 3, 9, 5, 2, 5, 1, 0, 2, 5, 0, 4, 1, 5, 1, 4, 8, 3, 9, 1, 6, 9, 2, 7, 7, 3, 0, 9, 1, 7, 8, 0, 6, 1, 3, 8, 7, 2, 3, 4, 0, 0, 5, 4, 1, 3, 1, 9, 7, 5, 9, 4, 6, 9, 9, 1, 0, 9, 8, 2, 0, 1, 5, 0, 0, 2, 7, 6
Offset: 1

Views

Author

Paul D. Hanna, Nov 29 2014

Keywords

Examples

			c = 2.55500248436101360804704969796239525102504151483916927730...
where the constant is equal to the sum
c = 1 + binomial(1,1) + binomial(3/2,2) + binomial(9/4,3) + binomial(25/8,4) + binomial(65/16,5) + binomial(161/32,6) +...+ binomial(n-1 + 1/2^(n-1), n) +...
which may be written as
c = 1 + 2/2 + 6/2^4 + 60/2^9 + 2550/2^16 + 476476/2^25 + 384115732/2^36 + 1305385229720/2^49 + 18382187112952806/2^64 +...+ A224883(n)*x^n/2^(n^2) +...
The constant also equals the logarithmic sum
c = 1 + 2*log(2) + 4*log(4/3)^2/2! + 8*log(8/7)^3/3! + 16*log(16/15)^4/4! + 32*log(32/31)^5/5! + 64*log(64/63)^6/6! +...+ (-2)^n*log(1 - 1/2^n)^n/n! +...
which converges rather quickly.
		

Crossrefs

Cf. A224883.

Programs

  • PARI
    /* By definition: */
    \p128
    {c=suminf(n=0,binomial(n-1 + 1/2^(n-1), n)*1.)}
    {a(n)=floor(10^n*c)%10}
    for(n=0,120,print1(a(n),", "))
    
  • PARI
    /* By a logarithmic identity (accelerated series): */
    \p1024
    {c=1+suminf(n=1, (-2)^n*log(1 - 1/2^n)^n / n!)}
    {a(n)=floor(10^n*c)%10}
    for(n=0,1000,print1(a(n),", "))

Formula

c = Sum_{n>=0} (-2)^n * log(1 - 1/2^n)^n / n!.
c = Sum_{n>=0} A224883(n) / 2^(n^2), where A224883(n) = (2^n/n!) * Product_{k=0..n-1} (2^(n-1)*k + 1).