A246919 The length of the longest nontrivial integral cevian of an equilateral triangle of side n that divides an edge into two integral parts, or 0 if no such cevian exists.
0, 0, 7, 0, 19, 14, 37, 13, 61, 38, 91, 28, 127, 74, 169, 49, 217, 122, 271, 76, 331, 182, 397, 109, 469, 254, 547, 148, 631, 338, 721, 193, 817, 434, 919, 244, 1027, 542, 1141, 301, 1261, 662, 1387, 364, 1519, 794, 1657, 433, 1801, 938, 1951, 508, 2107
Offset: 1
Keywords
Links
- Colin Barker, Table of n, a(n) for n = 1..10000
- Wikipedia, Cevian
Programs
-
Mathematica
Rest@ CoefficientList[Series[x^3 (7 + 19 x^2 + 14 x^3 + 16 x^4 + 13 x^5 + 4 x^6 - 4 x^7 + x^8 - 11 x^9 + x^10 + 2 x^11 + 4 x^13)/((1 - x)^3 (1 + x)^3 (1 + x^2)^3), {x, 0, 53}], x] (* Michael De Vlieger, Jun 06 2016 *)
-
PARI
\\ Returns the length of the longest integral cevian of an equilateral triangle of side n. longest(n) = { s=[]; m=12*n^2; fordiv(m, f, g=m\f; if(f<=g && (f+g)%2==0, x=(f+g)\2; if(x%4==0, s=concat(s, x\4) ) ) ); if(#s==1, return(0)); for(i=1, #s, if(s[i]!=n, return(s[i]))) } vector(100, n, longest(n))
Formula
Conjectures from Colin Barker, Jun 06 2016: (Start)
a(n) = 3*a(n-4)-3*a(n-8)+a(n-12) for n>14.
G.f.: x^3*(7 +19*x^2 +14*x^3 +16*x^4 +13*x^5 +4*x^6 -4*x^7 +x^8 -11*x^9 +x^10 +2*x^11 +4*x^13) / ((1 -x)^3*(1 +x)^3*(1 +x^2)^3).
(End)
Comments