A246920 The number of distinct lengths of nontrivial integral cevians of an equilateral triangle of side n that divide an edge into two integral parts.
0, 0, 1, 0, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 5, 4, 2, 2, 2, 2, 5, 2, 2, 5, 4, 2, 3, 2, 2, 5, 2, 6, 5, 2, 8, 2, 2, 2, 5, 8, 2, 5, 2, 2, 8, 2, 2, 9, 4, 4, 5, 2, 2, 3, 8, 8, 5, 2, 2, 5, 2, 2, 8, 8, 8, 5, 2, 2, 5, 8, 2, 8, 2, 2, 9, 2, 8, 5, 2, 14, 4, 2, 2, 5, 8, 2
Offset: 1
Keywords
Examples
a(15) = 5 because cevians of an equilateral triangle of side 15 have length 13, 21, 35, 57 or 169.
Links
- Colin Barker, Table of n, a(n) for n = 1..10000
- Wikipedia, Cevian
Programs
-
PARI
\\ Returns the number of cevians of an equilateral triangle of side n. count(n) = { s=[]; n=12*n^2; fordiv(n, f, g=n\f; if(f<=g && (f+g)%2==0, x=(f+g)\2; if(x%4==0, s=concat(s, x\4) ) ) ); Colrev(s)~ } vector(100, n, #count(n)-1)
Comments