cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A246927 Expansion of psi(-q) * phi(q^3)^2 * chi(q^3) in powers of q where phi(), psi(), chi() are Ramanujan theta functions.

Original entry on oeis.org

1, -1, 0, 4, -5, 0, 4, -8, 0, 2, -4, 0, 12, -4, 0, 16, -13, 0, 0, -12, 0, 8, -4, 0, 20, -5, 0, 4, -16, 0, 8, -24, 0, 8, -8, 0, 10, -4, 0, 32, -20, 0, 8, -12, 0, 0, -8, 0, 28, -9, 0, 24, -20, 0, 4, -32, 0, 8, -4, 0, 32, -12, 0, 16, -29, 0, 16, -12, 0, 16, -8
Offset: 0

Views

Author

Michael Somos, Sep 07 2014

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - q + 4*q^3 - 5*q^4 + 4*q^6 - 8*q^7 + 2*q^9 - 4*q^10 + 12*q^12 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(36), 3/2), 70); A[1] - A[2] + 4*A[4] - 5*A[5] + 4*A[6];
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -q^3, q^6] EllipticTheta[ 2, Pi/4, q^(1/2)] EllipticTheta[ 3, 0, q^3]^2 / (2^(1/2) q^(1/8)), {q, 0, n}];
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^4 + A) * eta(x^6 + A)^12 / (eta(x^2 + A) * eta(x^3 + A)^5 * eta(x^12 + A)^5), n))};
    

Formula

Expansion of eta(q) * eta(q^4) * eta(q^6)^12 / (eta(q^2) * eta(q^3)^5 * eta(q^12)^5) in powers of q.
Euler transform of period 12 sequence [-1, 0, 4, -1, -1, -7, -1, -1, 4, 0, -1, -3, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 246^(1/2) (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A246926.
a(3*n) = A034933(n). a(3*n + 1) = - A246926(n). a(3*n + 2) = 0.

A246928 Number of integer solutions to x^2 + 3*y^2 + 3*z^2 = n.

Original entry on oeis.org

1, 2, 0, 4, 10, 0, 4, 16, 0, 2, 8, 0, 12, 8, 0, 16, 26, 0, 0, 24, 0, 8, 8, 0, 20, 10, 0, 4, 32, 0, 8, 48, 0, 8, 16, 0, 10, 8, 0, 32, 40, 0, 8, 24, 0, 0, 16, 0, 28, 18, 0, 24, 40, 0, 4, 64, 0, 8, 8, 0, 32, 24, 0, 16, 58, 0, 16, 24, 0, 16, 16, 0, 0, 16, 0, 28
Offset: 0

Views

Author

Michael Somos, Sep 07 2014

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*q + 4*q^3 + 10*q^4 + 4*q^6 + 16*q^7 + 2*q^9 + 8*q^10 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(12), 3/2), 76); A[1] + 2*A[2] + 4*A[4] + 10*A[5];
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^3]^2, {q, 0, n}]; (* Michael Somos, Jan 08 2015 *)
  • PARI
    {a(n) = if( n<1, n==0, qfrep( [ 1, 0, 0; 0, 3, 0; 0, 0, 3], n)[n] * 2)};
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^6 + A)^10 / (eta(x + A)^2 * eta(x^3 + A)^4 * eta(x^4 + A)^2 * eta(x^12 + A)^4), n))};
    

Formula

Expansion of phi(q) * phi(q^3)^2 in powers of q where phi() is a Ramanujan theta function.
Expansion of eta(q^2)^5 * eta(q^6)^10 / (eta(q)^2 * eta(q^3)^4 * eta(q^4)^2 * eta(q^12)^4) in powers of q.
Euler transform of period 12 sequence [ 2, -3, 6, -1, 2, -9, 2, -1, 6, -3, 2, -3, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (64 t)) = 24^(1/2) (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A034933.
G.f. theta_3(q) * theta_3(q^3)^2.
a(3*n) = A034933(n). a(3*n + 1) = 2 * A246926(n). a(3*n + 2) = 0.
Showing 1-2 of 2 results.