A246964 Limiting sequence of transformations when we start with the all 1's sequence a=A000012 and at step n>=0 replace a(n+a(n)) with Sum_{k=n..n+a(n)} a(k).
1, 2, 1, 5, 1, 2, 1, 5, 10, 1, 2, 1, 23, 1, 2, 1, 5, 1, 39, 1, 2, 47, 50, 1, 2, 1, 5, 1, 2, 1, 5, 10, 1, 2, 1, 105, 1, 2, 1, 5, 1, 121, 1, 2, 129, 132, 1, 2, 1, 5, 1, 2, 1, 5, 10, 1, 2, 206, 432, 1, 2, 1, 5, 1, 449, 1, 2, 457, 889, 1, 2, 1, 820, 1, 2, 1, 5, 1
Offset: 0
Examples
Start . . . . . . . . . . . . . . . . . : 1,1,1,1,1,... Step 0: a(0+a(0)) = a(1)<- a(0)+a(1) = 2 : 1,2,1,1,1,... Step 1: a(1+a(1)) = a(3)<- a(1)+a(2)+a(3) = 4 : 1,2,1,4,1,... Step 2: a(2+a(2)) = a(3)<- a(2)+a(3) = 5 : 1,2,1,5,1,...
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..20000
Programs
-
Maple
mx:= 20000: # maximal index needed b:= proc() 1 end: a:= proc(n) option remember; global mx; local t; if n<0 then 0 else a(n-1); t:= b(n); if n+t<= mx then b(n+t):= add(b(k), k=n..n+t) fi; t fi end: seq(a(n), n=0..100); # Alois P. Heinz, Mar 04 2015
-
Mathematica
mx = 20000; (* Maximal index needed *) b[_] = 1; a[n_] := a[n] = Module[{t}, If[n<0, 0, t = b[n]; If[n+t <= mx, b[n+t] = Sum[b[k], {k, n, n+t}]]; t]]; a /@ Range[0, 100] (* Jean-François Alcover, Nov 13 2020, after Alois P. Heinz *)