cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A246975 Number of 4-ary plane multitrees with n edges.

Original entry on oeis.org

1, 1, 3, 10, 36, 121, 447, 1699, 6589, 25914, 103633, 419421, 1714463, 7068285, 29361629, 122764876, 516245009, 2181957489, 9264275600, 39495666700, 169000837410, 725574719515, 3124648750706, 13493792787415, 58422790497226, 253547380435914, 1102776319943605
Offset: 0

Views

Author

N. J. A. Sloane, Sep 14 2014

Keywords

Crossrefs

Cf. A128720 (2-ary case), A246974 (3-ary case).

Programs

  • PARI
    a(n)={my(m=4); if(n<1, n==0, sum(k=1, n+1, sum(i=1, k-1, sum(j=0, (n-i)\m, (-1)^j*binomial(k, i)*binomial(i, j)*binomial(n-i, k-i-1)*binomial(n-m*j-1, i-1)))/k))} \\ Andrew Howroyd, Feb 24 2020

Formula

a(n) = Sum_{k=1..n+1} Sum_{i=1..k-1} Sum_{j=0..floor((n-i)/4)} (-1)^j*binomial(k, i)*binomial(i, j)*binomial(n-i, k-i-1)*binomial(n-4*j-1, i-1)/k for n > 0. - Andrew Howroyd, Feb 24 2020

Extensions

Terms a(11) and beyond from Andrew Howroyd, Feb 24 2020
Showing 1-1 of 1 results.