A247005 Number A(n,k) of permutations on [n] that are the k-th power of a permutation; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 6, 1, 1, 1, 2, 3, 24, 1, 1, 1, 1, 4, 12, 120, 1, 1, 1, 2, 3, 16, 60, 720, 1, 1, 1, 1, 6, 9, 80, 270, 5040, 1, 1, 1, 2, 1, 24, 45, 400, 1890, 40320, 1, 1, 1, 1, 6, 4, 96, 225, 2800, 14280, 362880, 1, 1, 1, 2, 3, 24, 40, 576, 1575, 22400, 128520, 3628800, 1
Offset: 0
Examples
A(3,0) = 1: (1,2,3). A(3,1) = 6: (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1). A(3,2) = 3: (1,2,3), (2,3,1), (3,1,2). A(3,3) = 4: (1,2,3), (1,3,2), (2,1,3), (3,2,1). Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 2, 1, 2, 1, 2, 1, 2, 1, ... 1, 6, 3, 4, 3, 6, 1, 6, 3, ... 1, 24, 12, 16, 9, 24, 4, 24, 9, ... 1, 120, 60, 80, 45, 96, 40, 120, 45, ... 1, 720, 270, 400, 225, 576, 190, 720, 225, ... 1, 5040, 1890, 2800, 1575, 4032, 1330, 4320, 1575, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..140, flattened
- William Y. C. Chen and Elena L. Wang, r-Enriched Permutations and an Inequality of Bóna-McLennan-White, arXiv:2502.04136 [math.CO], 2025. See pp. 3, 14.
- H. S. Wilf, Generatingfunctionology, 2nd edn., Academic Press, NY, 1994, Theorem 4.8.2.
Crossrefs
Programs
-
Maple
with(combinat): with(numtheory): with(padic): b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add( `if`(irem(j, mul(p^ordp(k, p), p=factorset(i)))=0, (i-1)!^j* multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-1, k), 0), j=0..n/i))) end: A:= (n, k)-> `if`(k=0, 1, b(n$2, k)): seq(seq(A(n, d-n), n=0..d), d=0..14);
-
Mathematica
multinomial[n_, k_List] := n!/Times @@ (k!); b[, 1, ] = 1; b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[If[Mod[j, Product[ p^IntegerExponent[k, p], {p, FactorInteger[i][[All, 1]]}]] == 0, (i - 1)!^j*multinomial[n, Join[{n-i*j}, Array[i&, j]]]/j!*b[n-i*j, i-1, k], 0], {j, 0, n/i}]]]; A[n_, k_] := If[k == 0, 1, b[n, n, k]]; Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jan 14 2017, after Alois P. Heinz *)
Comments