cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247005 Number A(n,k) of permutations on [n] that are the k-th power of a permutation; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 6, 1, 1, 1, 2, 3, 24, 1, 1, 1, 1, 4, 12, 120, 1, 1, 1, 2, 3, 16, 60, 720, 1, 1, 1, 1, 6, 9, 80, 270, 5040, 1, 1, 1, 2, 1, 24, 45, 400, 1890, 40320, 1, 1, 1, 1, 6, 4, 96, 225, 2800, 14280, 362880, 1, 1, 1, 2, 3, 24, 40, 576, 1575, 22400, 128520, 3628800, 1
Offset: 0

Views

Author

Alois P. Heinz, Sep 09 2014

Keywords

Comments

Number of permutations p on [n] such that a permutation q on [n] exists with p=q^k.

Examples

			A(3,0) = 1: (1,2,3).
A(3,1) = 6: (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1).
A(3,2) = 3: (1,2,3), (2,3,1), (3,1,2).
A(3,3) = 4: (1,2,3), (1,3,2), (2,1,3), (3,2,1).
Square array A(n,k) begins:
  1,    1,    1,    1,    1,    1,    1,    1,    1, ...
  1,    1,    1,    1,    1,    1,    1,    1,    1, ...
  1,    2,    1,    2,    1,    2,    1,    2,    1, ...
  1,    6,    3,    4,    3,    6,    1,    6,    3, ...
  1,   24,   12,   16,    9,   24,    4,   24,    9, ...
  1,  120,   60,   80,   45,   96,   40,  120,   45, ...
  1,  720,  270,  400,  225,  576,  190,  720,  225, ...
  1, 5040, 1890, 2800, 1575, 4032, 1330, 4320, 1575, ...
		

Crossrefs

Main diagonal gives A247009.
Cf. A247026 (the same for endofunctions), A155510.

Programs

  • Maple
    with(combinat): with(numtheory): with(padic):
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          `if`(irem(j, mul(p^ordp(k, p), p=factorset(i)))=0, (i-1)!^j*
          multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-1, k), 0), j=0..n/i)))
        end:
    A:= (n, k)-> `if`(k=0, 1, b(n$2, k)):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!); b[, 1, ] = 1; b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[If[Mod[j, Product[ p^IntegerExponent[k, p], {p, FactorInteger[i][[All, 1]]}]] == 0, (i - 1)!^j*multinomial[n, Join[{n-i*j}, Array[i&, j]]]/j!*b[n-i*j, i-1, k], 0], {j, 0, n/i}]]]; A[n_, k_] := If[k == 0, 1, b[n, n, k]]; Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jan 14 2017, after Alois P. Heinz *)